

Aras Innovator 2023

Release
Programmer’s Guide

Document #: D-008122

Last Modified: 12/08/2022

©2022 Aras Corporation All Copyrights Reserved. 2

Aras Innovator 2023 Release

Programmer’s Guide

Copyright Information

Copyright © 2022 Aras Corporation. All Rights Reserved.

Aras Corporation

100 Brickstone Square

Suite 100

Andover, MA 01810

Phone: 978-806-9400

Fax: 978-794-9826

E-mail: Support@aras.com

Website: https://www.aras.com

Notice of Rights

Copyright © 2022 by Aras Corporation. This material may be distributed only subject to the terms and conditions set forth in the

Open Publication License, V1.0 or later (the latest version is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is prohibited unless

prior permission is obtained from the copyright holder.

Aras Innovator, Aras, and the Aras Corp "A" logo are registered trademarks of Aras Corporation in the United States and other

countries.

All other trademarks referenced herein are the property of their respective owners.

Notice of Liability

The information contained in this document is distributed on an "As Is" basis, without warranty of any kind, express or implied,

including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose or a warranty of non-

infringement. Aras shall have no liability to any person or entity with respect to any loss or damage caused or alleged to be caused

directly or indirectly by the information contained in this document or by the software or hardware products described herein.

file:///C:/Users/amoharir/Desktop/Working%20DIrectory/Templates/Support@aras.com
https://www.aras.com/

©2022 Aras Corporation All Copyrights Reserved. 3

Aras Innovator 2023 Release

Programmer’s Guide

Table of Contents

Send Us Your Comments ... 6

Document Conventions .. 7

1 Introduction .. 8

1.1 The Item ... 8
1.2 The Aras Markup Language (AML) .. 9
1.3 Methods and the IOM ... 9

2 Aras Innovator Runs on .NET Core .. 10

2.1 Platform Differences to Consider ... 10
2.2 Cross-Platform Development ... 11

3 AML ... 14

3.1 <Item> Tag ... 14
3.2 <Relationships> Tag .. 14
3.3 <property> Tags ... 14
3.4 Attributes .. 15

3.4.1 Item Attributes ... 15
3.4.2 Property Attributes ... 17

4 IOM Reference .. 18

4.1 IOMCredentials Class .. 19
4.2 Innovator Class .. 19
4.3 Item Class .. 19

4.3.1 Base Methods .. 19
4.3.2 Boolean Methods ... 19
4.3.3 Attribute Methods .. 19
4.3.4 Property Methods .. 20
4.3.5 Relationship Methods .. 20
4.3.6 Item Collection Methods .. 21
4.3.7 Logical Methods .. 22
4.3.8 Creating New Item Method .. 22
4.3.9 Error Methods .. 22
4.3.10 Extended Item Class Methods .. 23

5 Methods .. 24

5.1 Item Actions Extend the Item Class ... 24

5.1.1 Context Item .. 25
5.1.2 Methods are Item Factories ... 25
5.1.3 Handling the Wrong ItemType ... 25
5.1.4 Methodology .. 26

5.2 Built in Action Methods ... 26
5.3 Generic Methods .. 27

5.3.1 Context Item .. 27

 ©2022 Aras Corporation All Copyrights Reserved. 4

Aras Innovator 2023 Release

Programmer’s Guide

5.3.2 Methods are Item Factories ... 27
5.3.3 Methodology .. 28

5.4 Server Events ... 28

5.4.1 Context Item .. 28
5.4.2 Methodology .. 29
5.4.3 Available Server Events .. 29
5.4.4 Polymorphic ItemTypes Server Event Inheritance .. 32
5.4.5 Required Server Events .. 32
5.4.6 Server Event Version ... 32

5.5 Client Events .. 33

5.5.1 Context Item .. 33
5.5.2 Form Events .. 33
5.5.3 Field Events ... 34
5.5.4 Grid Events .. 34
5.5.5 Data Store Events ... 37
5.5.6 Item Type Events ... 39
5.5.7 Item Actions and Server Event .. 40

6 CUI Overview .. 41

6.1 Adding a Button on a Global Scope ... 41
6.2 Removing a Button from ItemType Scope ... 42
6.3 Defining an Identity on the Button .. 42

7 Aras Innovator Methodology .. 44

8 Cookbook ... 45

8.1 Create an Aras Innovator Object ... 45
8.2 Create an Item Object .. 45
8.3 Query for an Item ... 46
8.4 Query and Iterate Over a Set of Items ... 46
8.5 Query for an Item and Return Its Configuration ... 47
8.6 Query Using AML to Construct the Query Criteria ... 49
8.7 Query for the Item Next Promotion States ... 50
8.8 Query Using Relationships as Search Criteria ... 51
8.9 Recursive Query on a Related Item ... 52
8.10 Add an Item Configuration in One Transaction .. 53
8.11 Add a Named Permission .. 54
8.12 Set a Private Permission for an Item ... 55
8.13 Apply a Generic Method ... 56
8.14 Need to Save Text to a File .. 56
8.15 Need to Send Email from a Method ... 57
8.16 Need a Callback for a Relationships Grid Row Event ... 58
8.17 Need a Callback for a Relationships Grid Cell Event .. 59
8.18 Show Relationships in a Grid Control on the Form .. 60
8.19 Want the Identities for the User .. 61
8.20 Want a Field to Either Be a Sequence or User Entered Value .. 62
8.21 Want to Vault a File .. 62
8.22 Want to get an Existing Vaulted File and Save it with a New Document 63
8.23 Need to Reject an Item Promote .. 64
8.24 How to Handle Multilingual Properties ... 64

 ©2022 Aras Corporation All Copyrights Reserved. 5

Aras Innovator 2023 Release

Programmer’s Guide

8.25 How to Handle Date Properties .. 65
8.26 How to Pass Values from onBeforeX to onAfterX Events ... 67
8.27 How to Reference Custom DLL from Server Method .. 67
8.28 How to Add Sub Menus to Context Menu in Search Grid .. 69
8.29 How to Create a Dynamic List .. 70
8.30 How to Download a File from Aras Innovator to a Client Machine .. 71
8.31 How to Convert Strings .. 71
8.32 How to Load an XML File URL ... 71
8.33 How to Create a List of Nodes ... 71
8.34 How to Select a Single Node ... 72
8.35 How to Transform a Node .. 72
8.36 How to Create a NodeType .. 72
8.37 How to Get Text Associated with a Node .. 72
8.38 How to Set Text for a Node .. 73
8.39 How to Convert an Object into a String .. 73
8.40 How to Return an Error .. 73
8.41 How to Use the “Validate” Data Store Event .. 73

8.41.1 Example 1 .. 74
8.41.2 Example 2 .. 74

8.42 How to Use the “Change” Data Store Event .. 75
8.43 How to Use Different Data Types for Federated Properties .. 76

9 Aras Innovator Solution Studio .. 78

9.1 Features ... 78

10 Debugging .. 79

10.1 Enabling Debugging in Aras Innovator .. 79
10.2 Setting up VS.NET to Debug Server-Side Methods .. 79
10.3 Debugging Client-side Methods ... 81
10.4 Setting up the Server-side Logging .. 81

11 External APIs .. 82

11.1 .NET IOM ... 82

11.1.1 Obtaining an Access Token... 82
11.1.2 Using Token Provider with HttpServerConnection .. 92

11.2 COM-Compatible IOM .. 93

11.2.1 Obtaining an Access Token from COM Applications .. 94
11.2.2 Using Token Provider with HttpServerConnection .. 96

11.3 iOS IOM .. 97
11.4 Android IOM ... 98
11.5 Aras.IOM NuGet-package .. 98

11.5.1 .NET Core-Compatible WpfBrowserNavigator .. 99

11.6 Setting up local NuGet feed ... 99

12 Using CheckinManager ... 101

12.1 Submitting Images ... 101
12.2 Submitting Drawings .. 103
12.3 Async Processing ... 107

 ©2022 Aras Corporation All Copyrights Reserved. 6

Aras Innovator 2023 Release

Programmer’s Guide

Send Us Your Comments

Aras Corporation welcomes your comments and suggestions on the quality and usefulness of this
document. Your input is an important part of the information used for future revisions.

o Did you find any errors?

o Is the information clearly presented?

o Do you need more information? If so, where and what level of detail?

o Are the examples correct? Do you need more examples?

o What features did you like most?

If you find any errors or have any other suggestions for improvement, indicate the document title, and the
chapter, section, and page number (if available).

You can send comments to us in the following ways:

Email:
TechDocs@aras.com
Subject: Aras Product Documentation

Or,

Postal service:
Aras Corporation
100 Brickstone Square
Suite 100
Andover, MA 01810
Attention: Aras Technical Documentation

If you would like a reply, provide your name, email address, address, and telephone number.

If you have usage issues with the software, visit https://www.aras.com/support/

mailto:TechDocs@aras.com
https://www.aras.com/support/

 ©2022 Aras Corporation All Copyrights Reserved. 7

Aras Innovator 2023 Release

Programmer’s Guide

Document Conventions

The following table highlights the document conventions used in the document:

Convention Description

Bold

This shows the names of menu items, dialog boxes, dialog
box elements, and commands.

Example: Click OK.

Code
Code examples appear in courier font. It may represent

text you type or data you read.

Yellow highlight
Code highlighted in yellow draws attention to the code that is
being indicated in the content.

Yellow highlight

with red text

Red text highlighted in yellow indicates the code parameter
that needs to be changed or replaced.

Italics Reference to other documents.

Note:
Notes contain additional useful information.

Warning
Warnings contain important information. Pay special attention
to information highlighted this way.

Successive menu choices Successive menu choices may appear with a greater than
sign (-->) between the items that you will select consecutively.

Example: Navigate to File --> Save --> OK.

 ©2022 Aras Corporation All Copyrights Reserved. 8

Aras Innovator 2023 Release

Programmer’s Guide

1 Introduction

The purpose of this document is to provide a Guide to Programming Aras Innovator. It covers key
aspects of programming Aras Innovator for implementing your own business logic within the Aras
Innovator Enterprise Application Framework.

This document is intended to be used as a Desktop Reference and User Guide covering the following
topics:

• The AML (Aras Markup Language), which is the language that drives the Aras Innovator server.

• The IOM (Innovator Object Model), which is the Object API for the AML.

• How Methods work and the Methodology for implementing your own business logic.

• A Cookbook of recipes for performing common tasks.

• The .NET controls the API that the Aras Innovator Client is built on.

1.1 The Item
Everything in Aras Innovator is an Item, which is an instance of an ItemType, which itself is an Item;
illustrating that Aras Innovator is a self-describing system. Don't get hung up on the self-describing
nature of Aras Innovator and focus on the simplicity that everything eventually is an Item.

Items may have relationships to other Items illustrating that Items have structure. Relationships are
defined by RelationshipType, which is an Item that has three properties to define the RelationshipType
rule for the:

• source (parent) Item.

• related (child) Item.

• relationship Item.

When you create the RelationshipType you also create an ‘is_relationship’ ItemType which has the same
name as the RelationshipType. Its id is the value of the relationship_id Property on the RelationshipType.
This can get a bit confusing but simply put there is a RelationshipType/ItemType pairing to define the
RelationshipType rule and an ItemType to store the relationship Items.

Relationship Items have a related_id Property of type Item, which is the related (child) Item for the
relationship. The related_id Property is a link that points to an Item. The relationship Item also has a
source_id Property of type Item and is the source (parent) Item for the relationship.

So, in Aras Innovator everything is an Item, and Items may have relationships, which are Items that have
source and related Item Properties forming an Item configuration.

For example, an ItemType Item has Property relationships, and this Item configuration maps directly to
the relational database for persistent storage of the Item instances. Every ItemType has a matching
relational TABLE where the Property names are the COLUMN names.

 ©2022 Aras Corporation All Copyrights Reserved. 9

Aras Innovator 2023 Release

Programmer’s Guide

1.2 The Aras Markup Language (AML)
The Aras Markup Language (AML) is an XML dialect that follows the simple
/Item/Relationships/Item/Relationships repeating pattern to describe Item configurations.

Clients submit AML documents to the Aras Innovator server and receive an AML document back.

An AML document contains data (Items), structure (Relationships, which are hierarchical Items), and logic
(an action to perform some business logic on the Item). Each Item in the AML document has an action
attribute, which is the name of an Aras Innovator Method that performs business logic on the Item. The
Aras Innovator server interprets AML documents in a similar way to scripting languages. AML documents
are often referred to as AML scripts.

This is an example of a BOM in AML language:

<Item type="Part" action="add">

 <item_number>999-888</item_number>

 <description>Some Assy</description>

 <Relationships>

 <Item type="Part BOM" action="add">

 <quantity>10</quantity>

 <related_id>

 <Item type="Part" action="add">

 <item_number>123-456</item_number>

 <description>1/4w 10% 10K Resistor</description>

 </Item>

 </related_id>

 </Item>

 </Relationships>

</Item>

1.3 Methods and the IOM

The IOM (Innovator Object Model or Item Object Model) is an Object Model on top of the AML. It
provides the ability to build and submit AML documents to the Aras Innovator Server using a simple
Object API.

There is the ‘Method’ ItemType, which is used to implement user defined business logic. Methods are
written in JavaScript, C#, or VB.Net and use the IOM API to implement the business logic.

The following is a Method in JavaScript using the IOM that is the same as the AML BOM example in the
previous section:

var innovator = new Innovator();

var partItem = innovator.newItem("Part","add");

partItem.setProperty("item_number", "999-888");

partItem.setProperty("description", "Some Assy");

var bomItem = innovator.newItem("Part BOM","add");

bomItem.setProperty("quantity", "10");

var relatedItem = new Item("Part","add");

relatedItem.setProperty("item_number", "123-456");

relatedItem.setProperty("description", "1/4w 10% 10K Resistor");

bomItem.setRelatedItem(relatedItem);

partItem.addRelationship(bomItem) ;

var resultItem = partItem.apply();

 ©2022 Aras Corporation All Copyrights Reserved. 10

Aras Innovator 2023 Release

Programmer’s Guide

2 Aras Innovator Runs on .NET Core

All server components run on .NET 6.0.

.NET 6.0 is an open-source, cross-platform framework that runs on Windows, macOS, and Linux
operating systems. It is a successor of .NET Framework and was written from scratch to make it modular,
lightweight, and fast.

2.1 Platform Differences to Consider
Despite of being a successor of .NET Framework, .NET Core and .NET 5+ do not provide full feature
parity and brings various breaking changes that developers must understand when implementing new
server-side code or migrating existing one:

• New web framework

Aras Innovator has been migrated from classic ASP.NET web framework to run on ASP.NET Core -
an open-source and cross-platform framework for building modern web applications with the aim to
provide the access to modern features, better development experience and greater performance.

Aras Innovator now uses Kestrel as a primary web server – lightweight cross-platform web server for
ASP.NET Core applications. When installed via MSI package, IIS is used only as a reverse proxy
while still being configured via web.config. To learn more about IIS hosting configuration please visit
ASP.NET Core Module article.

• Unsupported API and breaking changes

There are number of APIs and technologies are not yet ported to .NET Core and .NET 5+, considered
as deprecated (thus no longer supported on a target platform and throws “Unsupported” exception at
runtime), have breaking changes in functionality behavior, or are completely removed.
Please see the following official Microsoft documentation about the differences between .NET
Framework and .NET 6.0:

• Assembly Redirection

In prior releases, when developing a server method that calls custom DLL that references different
version of a DLL that is also used by the Innovator, there is a chance to receive runtime errors due to
an assembly version mismatch. To address this, assembly binding instructions must be added to the
web.config file to instruct the runtime to properly load an assembly.

In .NET Core and .NET 5+ there is no longer such concept of binding redirections so no changes in
web.config are needed. Aras Innovator will automatically pick up and load an assembly from
application binaries folder.

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/aspnet-core-module?view=aspnetcore-3.1

 ©2022 Aras Corporation All Copyrights Reserved. 11

Aras Innovator 2023 Release

Programmer’s Guide

2.2 Cross-Platform Development
Despite of being cross-platform and providing high-level abstractions for low-level APIs, some .NET Core
and .NET 5+ API still may work differently depending on a current platform it is running on.

It is necessary for developers to know and understand these differences to be sure that the application
works identically on all supported platforms:

• Working with native code

.NET provides mechanisms to call native code via Platform Invoke.

There might be an existing code that uses P\Invoke to call Windows-specific API (e.g.via
kernel32.dll), and since it is not present on Linux, the code will not work when running in Linux.To
avoid compatibility issues, it is better to use available .NET Core and .NET 5+ functionality or 3rd-
party libraries that provide cross-platform capabilities.

If different libraries need to be loaded or APIs called depending on a current OS, consider decorating
the code with platform-specific blocks:

if (RuntimeInformation.IsOSPlatform(OSPlatform.Windows))

{

 // Call Windows-specific API

}

else

{

 // Call Linux-specific API

}

Follow the link to find more about native interoperability: Native interoperability - .NET

• OS-specific APIs

.NET Core and .NET 5+ exposes several APIs that might not be available for the given platform. Such
APIs throw PlatformNotSupportedException when called from an unsupported OS. For

instance, Process.MainWindowHandle throws the exception on Linux and macOS.

Make sure you do not use one of these APIs if you plan to run the Innovator on multiple platforms.

Follow the link to find more about unsupported APIs: APIs that always throw exceptions on .NET
Core and .NET 5+

• File system case-sensitivity

Windows uses a case-insensitife file system allowing to access files regardless of path casing, so a
single file or folder can be accessed by paths written in different cases, e.g.
c:\Innovator\Aras.Server.exe is equal to c:\INNOVATOR\aras.server.EXE

Unlike Windows, the Linux file system is case-sensitive, meaning that two paths with different casing
will point to a two different files\directories, e.g.

/app/bin/Aras.Server.exe is not equal to /app/bin/Aras.server.EXE

During development, make sure that all paths in code match corresponding entities on file system to
avoid any issues when running Aras Innovator on Linux.

https://docs.microsoft.com/en-us/dotnet/standard/native-interop/

 ©2022 Aras Corporation All Copyrights Reserved. 12

Aras Innovator 2023 Release

Programmer’s Guide

• Filesystem path delimiter

In Windows, it is allowed to use both slash (‘/’) and backslash (‘\’) as a path delimiter as they cannot
be part of file\folder name, so the next two paths are equal:

c:\Innovator\Aras.Server.exe is equal to c:/INNOVATOR/aras.server.EXE

On Linux, because the backslash is a valid file name character, the only allowed path delimiter is
slash (‘/’) so

/app/Innovator/Aras.Server.exe is not equal to

/app/Innovator\Aras.server.EXE

To avoid any issues with accessing file system, it is strongly recommended to avoid building paths
manually, and use special .NET API instead to build platform-specific file path:

• Path.Combine()

• Path.Join()

• Path.DirectorySeparatorChar

Example:

Calling Path.Join(Directory.GetCurrentDirectory(), "data"); will produce the

following results:

On Windows: “C:\Innovator\data”

On Linux: “/app/Innovator/data”

• Cultures and string comparison

.NET exposes CultureInfo API to work with different cultures. This API is platform-dependent and

may work differently on different platforms: Windows and Linux do not use identical lists of cultures. In
Windows it is part of the installation while Linux relies on data from International Components of
Unicode (ICU). Another difference is that certain cultures may not be installed on a particular OS.

String comparison with the use of InvariantCulture and CurrentCulture settings works differently on
Windows and Linux.

To avoid cross-platform issues, it is highly recommended to specify string comparison/culture
explicitly and follow Best Practices for Comparing Strings in .NET

• Date and time formatting

Date and Time .NET API may return date and time in a different format depending on the current OS
and its regional settings. For instance, calling DateTime.Now.ToString(); will produce the

following results:

On Windows: “05/21/2021 2:22:55 PM”

On Linux: “05/21/2021 15:22:55”

It is recommended to explicitly set culture or date/time format to avoid the differences between the
date format on Linux and Windows.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/best-practices-strings

 ©2022 Aras Corporation All Copyrights Reserved. 13

Aras Innovator 2023 Release

Programmer’s Guide

• Timezones

.NET provides an API to work with time zones via TimeZoneInfo. Depending on a platform, the

result of calling this API will be different: Windows maintains its own list of timezones while Linux uses
IANA time zones. These formats are not identical and might have different names for the same time
zone. For instance, the result of calling TimeZoneInfo.Local will be as follows:

On Windows: ”(UTC+03:00) Minsk”

On Linux: ”(UTC+03:00) GMT+03:00”

Please note that the Innovator has a custom implementation for mapping between these formats. It
always expects that the time zone name is provided in the Windows format and transforms it to IANA
name when TimeZoneInfo API is needed on non-Windows platform. In addition, the time zone name
on Aras Innovator Client is always converted to the Windows format from IANA.

• Line ending

Line endings vary by OS. Windows uses carriage return and line feed ("\r\n") as a line ending while
UNIX-based OSes use just line feed ("\n").

In .NET calling Environment.NewLine will also return different values depending on a current OS.

On Windows:

Environment.NewLine => “\r\n”;

On Linux:

Environment.NewLine => “\n”;

 ©2022 Aras Corporation All Copyrights Reserved. 14

Aras Innovator 2023 Release

Programmer’s Guide

3 AML

AML is the XML dialect and language that drives the Aras Innovator server. Clients submit AML
documents to the Aras Innovator server via HTTP. The server parses the AML applying the business
logic defined as the action attribute for the Items in the AML document, and an AML document is
returned. The AML dialect is very simple. The following sections describe the tags that define the AML
language:

3.1 <Item> Tag
The <Item> tag defines an Item instance. XML is case-sensitive (notice the capitalized Item.) There are

three principal attributes for the Item tag to define the Item instance:

• id – the unique ID for the Item.

• type – the ItemType name for the Item.

• action – the name of the Method that is applied to the Item.

There are other attributes, but these are the most significant. They define the Item and the action to
apply on it. The following is an AML query example requesting a Part Item by ID:

<Item type="Part" id="ACBDEF0123456789…" action="get"/>

Refer to section 5.2 Built in Action Methods for the list of Aras Innovator pre-built actions.

3.2 <Relationships> Tag
Items can have relationships to other Items. The <Relationships> tag is a container tag that holds the

set of relationship Items. Notice the capitalized Relationships. There are no attributes for the tag because
it is a container. With relationships it is possible to describe an Item configuration to any level deep as
necessary.

The following is an AML query example requesting a Part Item and its BOM relationships:

<Item type="Part" id="ACBDEF0123456789…" action="get">

 <Relationships>

 <Item type="BOM" action="get"/>

 </Relationships>

</Item>

3.3 <property> Tags
Properties for the Item are the nested tags directly below the <Item> tag. The Property name is the tag

name. For example, a ‘Part’ ItemType may have the properties: item_number, description, and cost,
which are also the tag names in the AML. Property names are lowercase, so the property tag names are
also lowercase.

 ©2022 Aras Corporation All Copyrights Reserved. 15

Aras Innovator 2023 Release

Programmer’s Guide

The following AML illustrates a simple Item configuration for describing a Part-to-Part BOM relationship:

<Item type="Part" action="add">

 <item_number>999-888</item_number>

 <description>Some Assy</description>

 <Relationships>

 <Item type="Part BOM" action="add">

 <quantity>10</quantity>

 <related_id>

 <Item type="Part" action="add">

 <item_number>123-456</item_number>

 <description>1/4w 10% 10K Resistor</description>

 </Item>

 </related_id>

 </Item>

 </Relationships>

</Item>

Property values always use locale-neutral formats. Decimal and float values use the period symbol (.) as
the decimal separator and no digit separator (i.e. commas separating thousands). The dash symbol (-) is
used to denote a negative value. Date/Time values should be in ‘YYYY-MM-DD[Thh:mm:ss]’ format and
in the local (or corporate) time zone. Language-specific values use the xml:lang attribute to specify the
language code. For example:

<Item type="Part">

 <item_number>292-102</item_number>

 <i18n:name xml:lang="de"

xmlns:i18n="http://www.aras.com/I18N">Rad</i18n:name>

 <i18n:name xml:lang="en"

xmlns:i18n="http://www.aras.com/I18N">Wheel</i18n:name>

 <cost>232.13</cost>

 <created_on>2008-08-24T08:12:02</created_on>

</Item>

3.4 Attributes
Properties are used to define the data for an Item. Attributes are meta-data for the Item or Property. They
are used to control the server logic and Methods. Think of attributes like command line switches, or as
arguments to a function.

In addition to the type, id, and action attributes mentioned above there are several additional attributes
used to control the server. The following is the attribute reference for the <Item> tag:

3.4.1 Item Attributes

Attribute Type Usage

type String The ItemType name for which the Item is an instance.

id String The unique ID value for the Item instance.

where String Used instead of the id attribute to specify the WHERE clause for the
search criteria. Include the table name with the column name using the
dot notation: where=‘user.first_name like 'Tom%'‘

action String The name of the Method (or Built in Action Method) to apply to the Item.

doGetItem Boolean If 0 then do not perform a final get action on the Item after the server
performed that action as defined by the action attribute. Default is 1.

 ©2022 Aras Corporation All Copyrights Reserved. 16

Aras Innovator 2023 Release

Programmer’s Guide

Attribute Type Usage

Used with action="get"

select String A comma delimited list of property names (column names) to return
which is the SELECT clause in the SQL statement.

orderBy String A comma delimited list of property names (column names) to order the
results and is the ORDER BY clause in the SQL statement.

page Integer The page number for the results set.

pagesize Integer The page size for the results set.

maxRecords Integer This defines the absolute maximum Items to be searched in the
database.

levels Integer The Item configuration depth to be returned. This should be used with
caution because of the performance hit due to its lack of granularity in
the data fetched. Use the nested Relationships style of defining your
queries to do the same thing but with far greater performance.

serverEvents Boolean If 0 then disable the server events improving performance. Default is 1.

isCriteria Boolean If 0 then include the nested structure for the Item configuration in the
response but don't use it as search criteria. Default is 1, which uses the
nested structure in the request as search criteria.

related_expand Boolean If 0 then do not expand the related_id Property for the relationship Items
to include the related Item. Another word returns its ID.

language String A comma-delimited list of language codes, or "*" to return all languages.
Multilingual property values are returned (if present) for all specified
languages.

Used with action="update" | “edit”

version Boolean If 0 then don't version an Item on update. Default is 1, which is version
the Item (if it’s a versionable Item) on update.

serverEvents Boolean If 0 then disable the server events improving performance. Default is 1.
Only ‘Update’ events are disabled, ‘Lock’ events can be executed if
using ‘Edit’.

 ©2022 Aras Corporation All Copyrights Reserved. 17

Aras Innovator 2023 Release

Programmer’s Guide

3.4.2 Property Attributes

Attribute Usage

type The ItemType name for the item instance.

keyed_name This is the keyed_name Property for the Item referenced by the Item type Property.

condition This is the condition value for the AML query. The condition value is any valid
SELECT condition supported by the database. The following is the list of possible
condition values:

Condition Comments

eq The SQL conditional symbols:

 =, <>, <=, >=, >, and <

are expressed as two letter mnemonic words:

 eq, ne, le, ge, gt, and lt

Example:

<name condition="gt">100</name>

ne

ge

le

gt

lt

like

not like

The value for the Property tag would include wild card
symbols, which are % for any set of characters.

Example:<name condition="like">Tom%</name>

between

not between

This is a range condition. You would include the AND keyword
in the Property tag value.

Example:

<cost condition="between">10.00 and

50.00</cost>

in

not in

This is a set-based condition where the value for the Property
tag is a comma delimited list of values for the set.

Example:

<name condition="in">'Tom', 'Peter',

'Joe'</name>

is

is null

is not null

Possible values for the Property tag could be null or not null.

Example:

<cost condition="is null"/>

<cost condition="is not null"/>

Xml:lang Language code for multilingual properties. You must use this in conjunction with the
internationalization namespace on the property tag. For example:

<i18n:name xml:lang="de"

xmlns:i18n="http://www.aras.com/I18N">Rad</i18n:name>

http://www.aras.com/I18N

 ©2022 Aras Corporation All Copyrights Reserved. 18

Aras Innovator 2023 Release

Programmer’s Guide

4 IOM Reference

The IOM Reference provides a general description of the IOM (Innovator Object Model or Item Object
Model) API. A more detailed API reference may be obtained from one of the following:

• On-line: Go to https://www.aras.com/support/documentation/

Under the section Other Documents, click On-Line API Guide.html.

• From Aras Innovator Client UI: Login as Innovator Administrator. Under the Help menu, select API
Reference.

• In Aras Innovator CD Image: Go to the documentation folder and open Aras Innovator - API

Guide.html.

The IOM is an Object Model for the AML, but it is not purely Object Oriented. Using Object Oriented
terms, an ItemType is like a ‘Class’ and the Item is like an ‘Object’. Although the Item is an Object with
methods, there is only one Item Class for all ItemTypes. In a pure Object-Oriented representation, there
would be a Class for each ItemType because each ItemType has its own set of Properties to describe the
different Items.

An Item Object is intended to be abstract and pliable. Depending on its internal structure, the Item Object
usually represents one of five following supported types of IOM Items:

• Single Aras Innovator Item of an arbitrary ItemType.

• Set of Aras Innovator Items, as in the case for results of the action ‘get’ when more than one Item
returns.

• Error, as in the case when an action request results in an error from the Aras Innovator Server.

• Result to represent an arbitrary text wrapped by <Result> XML tags.

• Logical to represent a set of properties wrapped in a logical statement by one of logical XML tags:
<or>, <and>, or <not>; usually used to specify the search criteria for the action ‘get’.

The IOM is intended to be a generic and compact API for modeling the Item structure of the AML as
abstract Objects. Most of the methods for the IOM deal with memory management of the AML document
for the Item Object. The AML is a script sent as a message to the Aras Innovator Server. The IOM is an
Object API to build the AML messages, submit them to the Aras Innovator Server and parse an AML
document that is returned by the Server.

There are two major types of methods in the Item Class:

• methods that only work with an item's AML in memory.

• methods that communicate with the Server, i.e., send request(s) to and get response(s) from the
server.

All get\set type of methods as well as isXXX(...) (e.g. isError(), isCollection(), etc.) and add\remove
methods (e.g. addRelationship(...), removeProperty(...), etc.) belong to the former group. Methods like
fetchXXX(...) (e.g. fetchLockStatus()), apply(...), email(...), promote(...), lock\unlockItem(...), etc. belong to
the latter group. In case a method sends a request to the server it must be explicitly mentioned in the API
reference method comments.

Note: The term ‘method’ has two meanings in this guide; the typographical convention used throughout

this Guide is as follows:

Lowercase ‘method’ refers to methods on an IOM Item Object.

Capitalized ‘Method’ refers to Method Items stored in the Aras Innovator database.

Sample code is shown in Courier 10pt font.

Optional arguments are surrounded by [] characters.

https://www.aras.com/support/documentation/

 ©2022 Aras Corporation All Copyrights Reserved. 19

Aras Innovator 2023 Release

Programmer’s Guide

4.1 IOMCredentials Class
The IOMCredentials Class defines the login credentials for connecting to the Aras Innovator Server. The
Item Class has a credentials public property, which is an IOMCredentials Object.

Typically, you do not need to know about or deal with the credentials Object because the Methods run in
a logged in session. You can, however, set the credentials for the Item Object using these methods, if
you want to submit the apply requests to a different Aras Innovator server. The IOMCredentials Class
methods are mostly getters and setters for URLs (Innovator and Vault servers), DB name, and login name
and password.

4.2 Innovator Class
In Innovator Class, methods like applyAML(…), applyMethod(…), and applySQL(…), being type

Item, send the apply request to the Aras Innovator Server. In response, the Server creates XML that
apply_ methods use to construct an Item Object to return; methods like getItemById(…) and

getItemByKeyedName(…) search the database the logged in session is connected to, and methods like

newItem(…), newError(…) and newResult(…) construct a new instance of the Item Object.

Other members of this class perform miscellaneous non-Item related operations. Use them if you need to
get a new GUID (methods getNewID()), generate a next sequence value (method

getNextSequence(…)), or calculate the MD5 hash value for a given string (method ScalcMD5(…) .)

4.3 Item Class

An Item Object can represent an Item, a set of Items, or an Error.

The Item public constructor has one required argument itemtype-name and one optional argument action.
The new Item is only populated with the Properties and default values from the ItemType when the
optional action argument is ‘add’.

The Item Class public field dom represents a DOM Object that holds the data for the Item in the AML

format.

4.3.1 Base Methods

The Item Class base method apply(…)submits the AML apply request to the Aras Innovator Server

using the context Item DOM as the AML source and returns a new Item built on the XML returned by the

Server. In contrast, the base method loadAML(…) does not return a new Item but rather rebuilds

this.dom using AML taken as an argument.

You can call the clone(…)method to get a new identical instance of the context Item and you can call

the setNewID() method to replace the context Item id by the newly generated GUID.

4.3.2 Boolean Methods

Use Call method isCollection()to find out whether or not the Item represents a set of Items, e. g.

whether or not its dom property holds more than one Item node. Use Call isError()method to find out

whether or not the Item represents an Error. See the IOM API on-line reference for more boolean
members of the Item Class.

4.3.3 Attribute Methods

Methods such as getAction(), getID(), and getType() return a value of Item node action, id, and

type attribute respectively, while method getAttribute(…) takes an attribute-name as an argument

and, therefore, can be used to get any attribute by name. Thus, getAction()is a short cut to

getAttribute(“action”), getID() is a short cut to getAttribute(“id”), and so on.

 ©2022 Aras Corporation All Copyrights Reserved. 20

Aras Innovator 2023 Release

Programmer’s Guide

Each get method in this group has a corresponding set method: setAction(…),

setID(…),setType(…), and setAttribute(…). Notice that method setAttribute(…) not only

sets a new value for an existing attribute but can also add a new attribute to the Item node and then sets
its value.

4.3.4 Property Methods

Property methods comprise a set of accessors to Item properties and Item property’s attributes: get_, set_
(which acts also as add_), and remove_. In addition, if a property has/needs a nested Item there are
methods to get/insert these nested Items.

Accessors to Properties are getProperty(…), setProperty(…), and removeProperty(…).These

methods take the property name as an argument.

Accessors to Property’s attribute are getPropertyAttribute(…), setPropertyAttribute(…), and

removePropertyAttribute(…). These methods take property and attribute names as arguments.

The method setProperty(…)/setPropertyAttribute(…)not only sets a new value for an existing

Item property/ property’s attributes but creates new property/ property’s attributes and then sets its value
if the property/ property’s attributes with a given name does not yet exist.

The setProperty method requires property values to be in a locale-neutral format. Decimal and float

values should use the period symbol (.) as the decimal separator and no digit separator (i.e. commas
separating thousands). The dash symbol (-) should be used to denote a negative value. Date/Time
values should be in ‘YYYY-MM-DD[Thh:mm:ss]’ format and in the local (or corporate) time zone.
Language-specific values should be set using the language code as the third argument.

Accessors to a Property’s nested Item are: getPropertyItem(…), setPropertyItem(…), and

createPropertyItem(…). All these methods take property name as an argument, and method

setPropertyItem(…) needs, in addition, an Item Object as the second argument to create a DOM for

the nested Item.

4.3.5 Relationship Methods

Relationship methods are made up of a set of Item’s relationship accessors: getRelationships(…),

addRelationship(…), createRelationship(…), and removeRelationship(…). The difference

between createRelationship(…) and addRelationship(…), two methods that both are adding an

Item node to the Relationship parent node, is subtle. Let’s consider the following server-side C# method
to illustrate how createRelationship(…) works:

Item myInnovator = this.getInnovator();

Item myItem = myInnovator.newItem("myType","myAction");

myItem.createRelationship("User","add");

This code results in the following myItem.dom XML:

<Item isNew="1" isTemp="1" type="myType" action="myAction">

 <Relationships>

 <Item isNew="1" isTemp="1" type="User" action="add" />

 </Relationships>

</Item>

Similar code that exercises addRelationship(…) methods is:

Item myInnovator = this.getInnovator();

Item myItem = myInnovator.newItem("myType","myAction");

Item relItem = myInnovator.newItem("User","add");

myItem.addRelationship(relItem)

 ©2022 Aras Corporation All Copyrights Reserved. 21

Aras Innovator 2023 Release

Programmer’s Guide

And this code results in the following myItem XML:

<Item isNew="1" isTemp="1" type="myType" action="myAction">

 <Relationships>

 <Item isNew="1" isTemp="1" type="User" action="add"

id="7EA3F18935CC493A900DAB63E839FDA2">

 <classification>/*</classification>

 <default_vault>67BBB9204FE84A8981ED8313049BA06C</default_vault>

 </Item>

 </Relationships>

</Item>

As you can see addRelationship(…) produces a more detailed Item node under the Relationship

parent node.

There are three methods getRelatedItem(…), setRelatedItem(…), and createRelatedItem(…)

that are valid for relationship Items only and are used as a short cut to the
Item.get/setPropertyItem() methods.

4.3.6 Item Collection Methods

This group is comprised of methods to work with collections. Collection in this context is a set of Items as
in the case for results from a query. The method appendItem(…) appends its Item Object argument to

an existing collection or converts a single Item instance to a set of Items. This mechanism is illustrated in
the following C# sample:

Innovator myInnovator = this.getInnovator();

Item myItem = myInnovator.newItem("myType","myAction");

At this point, myItem presents a single Item instance, myItem.dom XML looks like this:

<Item isNew="1" isTemp="1" type="myType" action="myAction" />

and myItem.isCollection() returns false. But three extra line of code:

Item addedItem = myInnovator.newItem("added","myAction");

// set ID to be able to remove addedItem later

addedItem.setID(myInnovator.getNewID());

myItem.appendItem(addedItem);

It converts myItem to a collection, e.g. myItem.isCollection() returns true, and myItem.dom XML

becomes as follows:

 <AML>

 <Item isNew="1" isTemp="1" type="myType" action="myAction" />

 <Item isNew="1" isTemp="1" type="added" action="myAction"

id="B12F9384B1DE4C4F8158C36D18269BE9" />

 </AML>

If the Item object id is not NULL it can be removed from the collection:

myItem.removeItem(addedItem);

Use the getItemCount() method to determine the size of a collection, the getItemByIndex(…)

method to get an instance of the Item Object based on its position inside of the collection, and method
getItemsByXPath(…) to find an Item by its XPath.

 ©2022 Aras Corporation All Copyrights Reserved. 22

Aras Innovator 2023 Release

Programmer’s Guide

4.3.7 Logical Methods

The methods newOR(), newAND(), and newNOT() insert logical nodes with tag <or>, <and> and

<not> respectively under the parent Item node and returns an Item Object that represents a newly
inserted logical node. For example, the following code:

Innovator myInnovator = this.getInnovator();

Item myItem = myInnovator.newItem("myType","myAction");

Item logicalOR = myItem.newOR();

logicalOR.setProperty("foo", "bar");

produces the following myItem.dom XML:

<Item isNew="1" isTemp="1" type="myType" action="myAction">

 <or>

 <foo>bar</foo>

 </or>

</Item>

The method removeLogical(…) removes a logical node specified by the method’s argument.

4.3.8 Creating New Item Method

You can create a new item using method newItem(…). See code samples in sections 4.3.6-4.3.8 for the

method usage illustration.

4.3.9 Error Methods

Error methods are comprised of a set of accessors to Error specific properties such as “faultcode”
(methods get/setErrorCode(…),) “faultstring” (methods get/setErrorString(…) ,) “faultactor”

(get/setErrorSource(…) ,) and “detail” (methods get/setErrorDetail(…) .)

The code sample below:

Innovator myInnovator = this.getInnovator();

Item error = myInnovator.newError("default detail");

error.setErrorCode("any number");

error.setErrorString("Hello, World");

error.setErrorSource("myMethod");

error.setErrorDetail("new detail");

produces the following Error Item DOM:

<Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Body>

 <Fault>

 <faultcode>any number</faultcode>

 <faultstring>Hello, World</faultstring>

 <faultactor>myMethod</faultactor>

 <detail>new detail</detail>

 </Fault>

 </Body>

</Envelope>

 ©2022 Aras Corporation All Copyrights Reserved. 23

Aras Innovator 2023 Release

Programmer’s Guide

4.3.10 Extended Item Class Methods

This set of methods implements specific functionality on the Item, which extends the base Item Class.
For reference purposes all the Extended Item Class methods are organized in the following four
categories:

• Getting Innovator reference method:

getInnovator() – see examples of usage in section 4.2.

• Lock methods:

lockItem()

unlockItem()

• Life Cycle method:

promote(…)

• Workflow methods:

instantiateWorkflow(…)

The following methods are obsolete and will be removed from future releases:

startWorkflow(…) –use Item.apply(“startWorkflow”) instead.

cancelWorkflow(…) - use Item.apply(“CancelWorkflow”) instead.

closeWorkflow(…) - use Item.apply(“closeWorkflow”) instead.

The detailed characteristic and usage illustration of these methods is outside the scope of the document.
See the on-line API reference for more details.

 ©2022 Aras Corporation All Copyrights Reserved. 24

Aras Innovator 2023 Release

Programmer’s Guide

5 Methods

Business logic in Aras Innovator is implemented using Method Items and is written in JavaScript, C#, or
VB.NET often using the IOM to interact with Aras Innovator Items.

There are three ways to implement Methods in Aras Innovator on the server side:

• Item Action Methods which extend the Item Class and perform logic on Item instances.

• Generic Methods, which implement arbitrary logic.

• Server Events which implement logic on the context Item before and\or after the server operates on
the Item.

Similarly, there are three ways to implement Methods in Aras Innovator on the client side:

• Item Methods which extend the Item Class and perform logic on Item instances.

• Generic Methods, which implement arbitrary logic.

• Form, Field, and Grid Events which implement logic on client-side UI events.

• Client Events that can be attached to an Item Type; triggered when a user’s interaction with the Aras
Innovator UI generates a new Item.

The Method Item has a comment Property that you can use to annotate the Method and can be seen
when you search and review the Methods as mentioned above.

5.1 Item Actions Extend the Item Class
One purpose for Methods is to extend the Item Class. Methods extend the Item Class when they are
bound as the related Item for ‘Item Action’ relationships on the ItemType. In the AML the Method name is
the action attribute name for the Item tag.

<Item type="My ItemType" action="My Method" id="…"/>

The Method could be called using the IOM like this (all three examples below are equivalent and are
written in C#):

1) Item myItem = this.newItem("My ItemType", "My Method");

 myItem.setID(this.getID());

 Item results = myItem.apply();

2) Item myItem = this.newItem("My ItemType");

 myItem.setID(this.getID());

 Item results = myItem.apply("My Method");

3) Item myItem = this.newItem();

 myItem.setID(this.getID());

 myItem.setType("My ItemType");

 myItem.setAction("My Method");

 Item results = myItem.apply();

 ©2022 Aras Corporation All Copyrights Reserved. 25

Aras Innovator 2023 Release

Programmer’s Guide

5.1.1 Context Item

As mentioned before Item Action Methods are executed on an instance of Item which is called a context
item (read section 4.2 Built in Action Methods for more information on how a context item is obtained for
Item Action Methods). The context item must be referenced inside Item Action Methods as this

keyword in JavaScript, and C#, and the Me keyword Object in VB.NET. The context item is an instance of

the IOM Item class; correspondingly any methods of the IOM Item class (see section 4.3 for more details)
could be called on the context item, e.g this.getProperty(“foo”) (C#) or Me.getProperty(“foo”) (VB.NET).

Note: To be able to execute a Method’s code Aras Innovator plugs it into a particular template that

provides required code attributes (method and class boundaries, import statements, etc.). Each

supported language (JavaScript, C#, VB.NET, etc.) has several available templates in Aras

Innovator. Everything written in the section is applied to default templates (there is one default

template per supported language). Methods can explicitly redefine the template that is used

during the method compilation. Usage of alternative templates and the methodology of writing

valid Methods for them is left outside the scope of the document.

5.1.2 Methods are Item Factories

Methods follow the Factory design pattern in that they return an Item or Error Object. The ‘Item Action’
Method must return an Item, which often is the result of an Item.apply() method call; typically, the last step
in the business logic for the Method. There are several ways to create an Item; the following IOM
methods return an Item Object: Item.apply(), Item.newItem(), Item.clone(), Innovator.newItem(),
Innovator.newResult(), and Innovator.newError().

C#

Item qryItem = this.newItem(this.getType(), "get");

qryItem.setID(this.getID());

qryItem.setLevels(1);

return qryItem.apply();

If the Method needs to return an error then use the Innovator.newError(text) method.

C#

Innovator innovator = this.getInnovator();

return innovator.newError("This method has failed.");

5.1.3 Handling the Wrong ItemType

Sometimes it is desirable to share the same Method for many ItemTypes. However, there are cases in
which the Method is intended to be used only by an Item of a specific ItemType.

The way you can prevent the use of a Method with a context item of a wrong type is to throw an exception
when the wrong ItemType is used (this is what the core Item Class methods do when the ItemType is not
of the specific desired value). Here is a sample of what should be done in a Method that needs to
operate on a specific type of Item:

C#

Innovator innovator = this.getInnovator();

if (this.getType() != "My ItemType")

{

 return innovator.newError("Item must be of type 'My ItemType'");

}

return null;

 ©2022 Aras Corporation All Copyrights Reserved. 26

Aras Innovator 2023 Release

Programmer’s Guide

5.1.4 Methodology

One of the principal concepts in programming Aras Innovator is to write Methods called on Items. The
‘Item Action’ relationships on ItemTypes simulate Object Oriented programming, where the ItemType is
the Class and ‘Item Action’ relationships to Methods are the Class methods. Literally the Method code is
compiled dynamically to extend the Item Class with this method and calls it. Like class instance in OO
programming the context item is an object on which Methods are performed. At the same time there are
some peculiarities in how to use a context item in Aras Innovator’s Item Action Methods. One important
detail about Item Action Methods is that they must always return an Item which is the result of work done
by the Item Action Method. An Item Action Method might work with a context item, but the context item is
used here more as an input value (it still must be referenced as this or Me from inside Methods). It’s
highly recommended that Item Action Methods do not change the context item but rather create a new
item that is returned from the method. You can use the combination of the Item.getProperty(…)

method with the Item.setProperty(…) method to populate the new temporary Item or use the

Item.clone(…) method to construct the new Item from the context item. If the developer of the Method

code chooses to modify the context item and not create a new item, the context item must be returned
from the method.

5.2 Built in Action Methods

The Method name is passed as the action attribute for the <Item> tag in AML.

<Item type="My ItemType" action="My Method" id="…"/>

In addition to Method names as the action attribute value there is also a set of ‘Built in Action Methods’.
These are basically the same as Methods, but you cannot find them in the database when searching the
Method Items. Nevertheless, they are called the same way as ordinary Methods via the action attribute.

The following table is a reference for Built in Action Methods.

Built in Action Method Comments

add Adds the Item as an instance of an ItemType.

update Updates the Item.

o The Item must be locked.

o If the Item is versionable and is being updated for the first time
since being locked, the update versions the Item applying the
update to the new version, unless the version=‘0’ attribute is
specified, which disables the versioning.

purge Deletes the version of the Item.

delete Deletes all versions of the Item. The purge and delete are the same for
non-versionable Items.

get Gets the Item(s) and its configuration based on the AML Item
configuration used to query the database.

getItemConfig Returns the Item configuration as described by the standard AML
query. The AML in and out are no different from the standard
action=‘get’.

The GetItemConfig is optimized by limiting the logic done between the
SQL call and the AML result. Performance improvement is gained by
limiting the features typically available in Innovator GetItem (no server
events or access checking on the sub level Items).

 ©2022 Aras Corporation All Copyrights Reserved. 27

Aras Innovator 2023 Release

Programmer’s Guide

Built in Action Method Comments

GetItemRepeatConfig Performs a recursive query on a related item. It will continue getting all
the related IDs of the parent item recursively. The number of recursive
calls is dependent on the value of the repeatTimes variable.

edit Locks, updates, and unlocks the Item.

create Acts as a ‘get’ if the Item exists, otherwise acts as an ‘add’.

merge Acts as an ‘edit’ if the Item exists, otherwise acts as an ‘add’.

lock Locks the Item and is the same as the Item.lockItem() method.

unlock Locks the Item and is the same as the Item.unlockItem() method.

version Creates a new generation of an Item, clearing the locked_by_id of the
originating Item and setting the locked_by_id in the new generation. It
then applies an update to the newly created generation. The server
events triggered in the following sequence: onBeforeVersion,
onAfterVersion, onBeforeUpdate, onAfterUpdate.

If the item is not versionable, an exception is thrown.

5.3 Generic Methods

Generic Methods are used to perform arbitrary business logic. They can be used to perform any logic
you require, and its input Item is up to you. They are called in the IOM with the
Innovator.applyMethod(…) method.

5.3.1 Context Item

The context Item is this keyword Object in JavaScript and C# and is the Me Object in VB.NET. The

XML data for the context Item is the XML submitted as the payload for the request and it may not be valid
AML, just well formatted XML. It does not matter it is the input for the Generic Method and can be
whatever you want it to be.

5.3.2 Methods are Item Factories

The Generic Method must return an Item or an Error like ‘Item Action’ Methods. Often the result of the
Generic Method is some simple text or an HTML fragment. The text can be returned using the
Innovator.newResult(text) method. If the Method needs to return an Error use

Innovator.newError(text) method.

C#

Innovator innovator = this.getInnovator();

return innovator.newResult("This method was successful.");

OR

Innovator innovator = this.getInnovator();

return innovator.newError("This method has failed.");

 ©2022 Aras Corporation All Copyrights Reserved. 28

Aras Innovator 2023 Release

Programmer’s Guide

C# Example

Innovator innovator = this.getInnovator();

Item item = this.newItem("User", "get");

Item results = item.apply();

int count = results.getItemCount();

if (count<1) return innovator.newError("No users found.");

StringBuilder content = new StringBuilder();

content.Append("<table>");

for (int i=0; i<count; ++i)

{

 Item user = results.getItemByIndex(i);

 content.Append("<tr><td>Login Name:</td><td>");

 content.Append(user.getProperty("login_name"));

 content.Append("</td></tr>");

}

content.Append("</table>");

return innovator.newResult(content.ToString());

5.3.3 Methodology

Typically, all you need are simple name/value pairs as input for your Method and those are like Property
tags for the Item. The body for the Generic Method is nested inside an <Item> tag so you can pass a

name/value pair as arguments to the Generic Methods like ordinary Property tags.

The Item passed as the context Item can represent any Item you want including fictitious Items. You have
the added advantage of continuing to use the IOM API to operate on the context Item Object.

5.4 Server Events
The purpose of Server Event Methods is to perform some custom actions either before (OnBeforeXXX)

or after (OnAfterXXX) a particular server action (like add, delete, etc.) or fully replace the action

processing on server (OnXXX). Detailed information about Aras Innovator server events can be found in

section 5.4.3.

5.4.1 Context Item

In the case of the Server Event Method, the context item is a direct analogy of a class instance (i.e.,
object) in OO programming in the sense that the Method operates on its context item (as it was
mentioned above the context item could be referenced as this keyword in JavaScript and C#, and the

Me keyword Object in VB.NET from inside the Method). In other words, the purpose of a Server Event

can be defined as ‘changing the context item’, so the modified context item is the result of work done by
the Server Event Method. Of course, the Server Event Method doesn’t necessarily have to alter its
context item but rather perform some other actions (e.g. log some info; send e-mail; etc.); this is usually
typical for Methods performed on OnAfterXXX event.

 ©2022 Aras Corporation All Copyrights Reserved. 29

Aras Innovator 2023 Release

Programmer’s Guide

5.4.2 Methodology

A Server Event Method might return an Item only if it wants to return an error. Otherwise, the Server
Event Method may not have a return statement.

C#

Innovator innovator = this.getInnovator();

return innovator.newError("This method failed.");

In the case where a Method is called as the OnBeforeXXX event and it returns an error, the context Item

is replaced with an Error Item and is simply passed on through to the client. No further server action is
taken. In the case of an OnAfterXXX event the server rolls back the transaction and passes the Error

back on through to the client.

It’s important to understand that Server Event Methods that are called on OnBeforeXXX events operate

on the request AML sent from the client. Server Event Methods that are called on OnAfterXXX events

operate on the response AML that the server is about to send back to the client and Server Event
Methods that fully replace server actions (OnXXX) get client request AML as a context item and must

replace it with the response AML that is passed on through to the client. In other words, it’s important to
remember that Server Event Methods called on OnBeforeXXX events are invoked before the server

parses the request and after the Method is done the context item must have a valid request AML format
(it could be modified by the method, but it still should have a valid format so that server would be able to
parse it). From the other side, Server Event Methods called on OnAfterXXX events are invoked after the

server processed the request, and after the Method is done the context item must have a valid response
AML format (it could be modified, e.g., Method could populate it with federated data, but it should be valid
response AML, so that the client is able to parse it.)

5.4.3 Available Server Events

The following Server Events are currently available in Aras Innovator. Each of the following events is
followed by a short description and an example of common use.

• OnBeforeAdd

o Runs before an item is added to the database (through the add, create, or merge actions.)

o OnBeforeAdd methods are often used for validation purposes (e.g., to make sure the property

values do not violate a business rule). The same method that is called OnBeforeAdd is often also
called OnBeforeUpdate, to perform the same validation.

• OnAfterAdd

o Runs after an item is added to the database (through the add, create, or merge actions), but
before it is returned to the client.

o OnAfterAdd methods are used to synchronize with other items or with external systems (e.g.,

add a new part number to ERP).

• OnAdd

o Runs in place of the built-in add action (via add, create or merge). Neither OnBeforeAdd nor

OnAfterAdd events are called when using OnAdd.

o An OnAdd method completely replaces the built-in add action and is typically used for federated

items. The method is expected to create the appropriate records in the database and form a
proper AML response. Failure to do either is likely to result in an error.

 ©2022 Aras Corporation All Copyrights Reserved. 30

Aras Innovator 2023 Release

Programmer’s Guide

• OnBeforeUpdate

o Runs before an item is updated in the database (through the update, edit or merge actions.)

o OnBeforeUpdate methods are often used for validation purposes (often along with

OnBeforeAdd). The request may either be rejected completely (by returning an error) or modified
to conform to the proper rules.

• OnAfterUpdate

o Runs after an item is updated in the database (through the update, edit or merge actions), but
before it is returned to the client.

o OnAfterUpdate methods can be used to synchronize with other items or with external systems

(e.g., updating a part description in ERP).

• OnUpdate

o Runs in place of the built-in update action (via update, edit or merge). Neither
OnBeforeUpdate nor OnAfterUpdate events are called when using OnUpdate.

o An OnUpdate method completely replaces the built-in update action and would typically be used

for federated items. The method is expected to modify the appropriate records in the database
and form a proper AML response.

• OnBeforeDelete

o Runs before an item is deleted (through the delete or purge actions.)

o OnBeforeDelete methods are typically used to cancel a delete operation based on a business

rule.

• OnAfterDelete

o Runs after an item is deleted (through the delete or purge actions.)

o OnAfterDelete methods would be used to synchronize with other items or with external

systems (e.g., remove a record from ERP.)

• OnDelete

o Runs in place of the built-in delete action. Neither OnBeforeDelete or OnAfterDelete

events are called when using OnDelete.

o An OnDelete method completely replaces the built-in delete action and is typically used for

federated items. The method is expected to remove the appropriate records in the database and
form a proper response.

• OnBeforeGet

o Runs before a search.

o OnBeforeGet methods are typically used to add additional criteria to a search, based on

business rules. For example, the method might find the default location of the user and add that
location as criteria for the query.

• OnAfterGet

o Runs after a search is executed, but before the results are returned.

o OnAfterGet methods are commonly used to populate federated properties. This might involve

performing calculations on other properties or extracting data from an external system. Once the
value of the federated property is set, it appears to the client like any other property.

• OnGet

o Runs in place of the built-in get action. Neither OnBeforeGet nor OnAfterGet events are

called when using OnGet.

 ©2022 Aras Corporation All Copyrights Reserved. 31

Aras Innovator 2023 Release

Programmer’s Guide

o An OnGet method completely replaces the built-in get action and is typically used for federated

items. The method is expected to retrieve the appropriate records in the database and form a
proper AML response.

• OnBeforeCopy

o Runs before an item is copied (via the copy action.)

o An OnBeforeCopy method might be used to cancel a copy operation that violates a business

rule.

• OnAfterCopy

o Runs before an item is copied (via the copy action.)

o OnAfterCopy methods can be used to set properties of the new item created by the copy.

• OnBeforeLock

o Runs before an item is locked (via the lock or edit actions)

o An OnBeforeLock method may be used to prevent an item from being locked based on

business rules.

• OnAfterLock

o Runs after an item is locked (via the lock or edit actions.)

o OnAfterLock methods may be used to synchronize locks with other items.

• OnBeforeUnlock

o Runs before an item is unlocked.

o An OnBeforeUnlock method may be used to prevent an item from being unlocked based on

business rules.

• OnAfterUnlock

o Runs after an item is unlocked.

o OnAfterUnlock methods may be used to synchronize locks with other items.

• OnBeforeVersion

o Runs before an item is versioned (through the version, update, edit or merge actions.)

o OnBeforeVersion methods are typically used to cancel a version operation based on a

business rule.

• OnAfterVersion

o Runs after an item is versioned (through the version, update, edit or merge actions.)

o An OnAfterVersion method might be used to set properties of the new item version.

• OnBeforeMethod

o Runs before Server Action Method.

• OnAfterMethod

o Runs after Server Action Method.

• OnGetKeyedName

o Runs when the system generates the keyed_name for an item.

o Used to override the standard logic for generating keyed names.

 ©2022 Aras Corporation All Copyrights Reserved. 32

Aras Innovator 2023 Release

Programmer’s Guide

5.4.4 Polymorphic ItemTypes Server Event Inheritance

Administrators can define a server event against a Polymorphic ItemType. The benefits of defining the
server event against the Polymorphic ItemType is that the event will be processed for all poly-sources.

For example, if you want a single server event to be triggered against all CAD, Document, and Part

ItemTypes, you could simply add an event handler to a server event on the Change Controlled Item

ItemType. Once defined against the Polymorphic ItemType, all poly sources will inherit the event handler
which will be executed every time the event occurs on any of poly sources.

You can view all inherited methods against an ItemType by selecting the Inherited Server Events

tab for the ItemType you are working with.

5.4.5 Required Server Events

Administrators can mark a server event as “required”. Server Events that are marked as required cannot
be ignored by using the serverEvents=0 attribute as part of AML request.

To set a server event as required, so that it is not ignored, you need to set the is_required Boolean

property to 1 for the ServerEvent.

5.4.6 Server Event Version

The new version of server events allows for improved performance when there is a group of items passed
to be acted upon.

By default, all server events follow the standard behavior that has been seen in previous releases of Aras
Innovator (Version 1). The new version (Version 2) is described for each operation in the following
sections.

5.4.6.1 onAfterUpdate, onAfterAdd, and onAfterVersion Version 2

The onAfterUpdate, onAfterAdd, and onAfterVersion Version 2 event is designed for use when the where
or idList attribute is specified on the <Item …> node of the AML request. The server event is executed
only once for the entire group, as opposed to once per item as the Version 1 event does. The context
item contains the results of all the items applied as part of the update statement.

5.4.6.2 onBeforeCopy/onAfterCopy Version 2

When a source item is versioned or is cloned it forces cloning of all existing relationships that belong to
the Item. The onBeforeCopy and onAfterCopy Version 2 allows for onBeforeCopy and onAfterCopy
server events to be triggered on the relationship items when a version/copy of a parent item exits. These
events are not triggered on a Version 1 server event. These events should be placed on the
is_relationship=1 ItemType.

 ©2022 Aras Corporation All Copyrights Reserved. 33

Aras Innovator 2023 Release

Programmer’s Guide

5.5 Client Events

There are several Events available on the client side, including:

• Form Events

• Field Events

• Grid Events

• Data Store Events

• Item Type Events

• Item Actions

5.5.1 Context Item

The this keyword context Object is an Item Object for Item Actions. However, the context Object is not

the Item Object for Form, Field, and Grid Events. This context Object is the browser document (DOM)
Object for the Form and Grid Events and is the Field Object for Field Events.

The context Item Object for Form, Grid, and Field Events is the document.thisItem Object, which is

an Item Object and should be used with the IOM API. For relationship grid events use
parent.thisItem, which is a pointer to the document.thisItem Object.

5.5.2 Form Events

The Form Events are the HTML page events; for example, onLoad, onUnload, onResize,

onMouseDown, onMouseUp, and others (refer to the ‘Form Events’ List in Aras Innovator for the complete

list of available events.)

You bind your Method to the Form Event using the Form Tool. Select the Form Event tab and add the
event relationships as shown below:

 ©2022 Aras Corporation All Copyrights Reserved. 34

Aras Innovator 2023 Release

Programmer’s Guide

5.5.3 Field Events

The Field Events are the HTML field events; for example, onSelect, onClick, onChange, onBlur, onFocus,
and others (refer to the ‘Field Events’ List in Aras Innovator for the complete list of available events.) Use
the following procedure:

1. Bind your Method to the Field Event using the Form Tool.

2. Select the Field by clicking on it in the canvas area in form Tool or from the Fields grid in the upper
left-hand corner of the Form Tool.

3. Select the Field Event tab and add the event relationships as shown here:

5.5.4 Grid Events

Grid Events are the events for the grid control, which is used in the Relationships tab area for tear off Item
windows. The grid events occur on the row (section 5.5.4.1) and on the cell (section 5.5.4.2.)

Like Server Events you bind a Method as the callback for the event as the Grid Event relationship on the
RelationshipType Item, and as the Grid Event relationship on the Property Item.

 ©2022 Aras Corporation All Copyrights Reserved. 35

Aras Innovator 2023 Release

Programmer’s Guide

The Method gets at least three arguments: relationshipID, relatedID, gridApplet. The relationshipID is the
ID for the relationship Item for the selected row. The relatedID is the ID for the related Item for the
selected row. And the gridApplet is a handle to the grid control object. The relatedID may be empty if
there is no related Item for the relationship row. The relationshipID is also the ID for the grid control row.
Edit the RelationshipType Item and add Grid Events relationships as shown here:

5.5.4.1 Row Events

The row events include:

Event Comment

onSelectRow Fires when the row is selected.

onInsertRow Fires when the row is inserted.

onDeleteRow Fires when the row is deleted.

 ©2022 Aras Corporation All Copyrights Reserved. 36

Aras Innovator 2023 Release

Programmer’s Guide

The Method for the event is called with three arguments:

Argument Type Comment

relationshipID String The ID for the relationship Item. This is also the selected
row ID for the grid control.

relatedID String The ID for the related Item. The relatedID maybe empty if
there is no related Item for the relationship row.

gridApplet GridControl The handle to the grid control.

5.5.4.2 Cell Events

Edit the Property Item and add Event relationships as shown here:

The cell events include:

Event Comment

onEditStart Fires when the cell gets focus.

onEditFinish Fires when the cell loses focus.

onChangeCell Fires when the cell value changes.

Default Search

onSearchDialog

 ©2022 Aras Corporation All Copyrights Reserved. 37

Aras Innovator 2023 Release

Programmer’s Guide

 The Method for the event is called with five arguments:

Argument Type Comment

relationshipID String The ID for the relationship Item. This is also the selected
row ID for the grid control.

relatedID String The ID for the related Item. The relatedID may be empty
if there is no related Item for the relationship row.

gridApplet GridControl The handle to the grid control.

propertyName String The name of the Property for the cell column selected.

colNumber Integer The column position number in the grid

5.5.5 Data Store Events

Data Store Events are client-side events that trigger when the Aras Innovator client tries to update its
internal data store. The data store is a mechanism that helps sync the state of data across the client. This
means that a data store event will trigger regardless of the UI control that updates the data store. So
instead of creating multiple client events for grids, forms, fields, etc., a developer can create a single
event that will execute if data is updated in any of those controls.

There are 2 event types implemented for the data store.

• Validate: Method runs prior to updating the property in the data store. The method logic may

cancel the update and return an error message to the user.

• Change: Method runs after a property has been updated in the data store. The method logic may

manipulate the item in the data store.

 ©2022 Aras Corporation All Copyrights Reserved. 38

Aras Innovator 2023 Release

Programmer’s Guide

Data store events are configured similarly to grid cell events – on an ItemType’s properties.

It is important to note the following about data store events:

• Data store events are client-side events and do not directly update the data in the database.

• Data store events cannot directly manipulate UI controls in the client. For example, a Validate data

store event could prevent a user from updating a property and return an error message telling them
why. However, the event could not disable a grid cell or form field for the property, because those are
UI controls.

• Data store events should not be configured on the properties of Poly ItemTypes. These events should
be configured on the properties of the poly source ItemTypes instead.

 ©2022 Aras Corporation All Copyrights Reserved. 39

Aras Innovator 2023 Release

Programmer’s Guide

5.5.6 Item Type Events

Client Events that can be attached to an Item Type are triggered when your UI actions generate a new
Item. These events are triggered from the client interface regardless of UI context or where in the GUI the
new Item creation was initialized. These events would be triggered universally from the Main Menu, the
TOC RMB menu, the Main Grid RMB menu, Relationship Grid, etc.

For Item Type new item creation, 3 events have been implemented. One event is triggered before a new
Item is created; another event is triggered after an Item has been created; the third event replaces the
standard client ‘new Item’ logic.

• onBeforeNew: Method runs prior to a new Item creation. It can cancel subsequent client operations

(i.e., form opening). It can cancel creation of new Items.

This event is often used to validate current conditions and determine if it is ok to create a new Item.

• onAfterNew: Method runs after a new Item is created. Subsequent standard client logic is executed

following method completion (i.e., form opening). Method is passed a new Item.

This event is often used to populate a new item with data and open custom dialogs.

• onNew: The method replaces the standard ‘new Item’ client behavior.

This event is used in special situations where a solution must maintain full control over the new Item
creation process.

Note: It is possible that both onBeforeNew and onAfterNew events are assigned to the same

ItemType and therefore executed sequentially.

 ©2022 Aras Corporation All Copyrights Reserved. 40

Aras Innovator 2023 Release

Programmer’s Guide

5.5.7 Item Actions and Server Event

The Methods related to the ItemType via the ‘Item Action’ relationship are called via the action attribute
and the Item.apply() method. Review them by searching the ‘Item Actions’ Tab on the ItemType.

The Methods related to the ItemType via the ‘Server Event’ relationship are called by the server as pre
and post event callbacks for the primitive server actions: add, update, delete, and get. Review them by
searching the ‘Server Events’ Tab on the ItemType.

Review the Generic Methods by searching the Method Items.

 ©2022 Aras Corporation All Copyrights Reserved. 41

Aras Innovator 2023 Release

Programmer’s Guide

6 CUI Overview

The Aras CUI was introduced to include additional types of controls that are dynamic and depend on the
context in which they appear. Several Aras solutions use this functionality, such as QMS, MPP, and
Technical Publications. The following steps allow you to customize the command bar to customize CUI
functionality. The ‘Client Presentation’ item, which is the root of all CUI items can be found in the
Administration > Configuration > Client Presentation section of the Table of Contents.

6.1 Adding a Button on a Global Scope

1. Go to the Table of Contents: Administration > Configuration > Client Presentation.

2. Select Global Presentation Configuration.

3. In the Command Bar Section tab, right-click on the item with the Location: Main Window Header >
View “Command Bar Section”

4. Lock the Command Bar Section Item for editing.

5. In the Command Bar Item tab, select Create Related from the dropdown.

6. Click New relationship.

7. Select Button in the new dialog.

8. Click OK. A new line will appear in the Command Bar Item tab.

9. Set Action to Add, and Identity to World.

10. Right-click and select “View Command Bar Item.”

 ©2022 Aras Corporation All Copyrights Reserved. 42

Aras Innovator 2023 Release

Programmer’s Guide

11. Set the values for the fields in the form.

12. Save, Unlock, and Close all items.

13. Log out and back in to see the changes.

14. Clicking on the button will run the On_Click_Handler.

6.2 Removing a Button from ItemType Scope
1. Go to the Table of Contents: Administration > ItemTypes.

2. Run a search for the ItemType.

3. Open the ItemType for editing.

4. In the Client Style tab, right-click on the first entry > View “Presentation Configuration”.

5. In the Presentation Configuration, create a New Related Command Bar Section Item with
Classification: Data Model.

6. In the new row, set the Identity to World.

7. Right-click on the new row > View “Command Bar Section”.

8. Set the property values. In the following example, we are removing the Print button from the Tearoff
Window.

o Name: Remove Print

o Location: Tearoff Window Toolbar

9. In the Command Bar Item tab, select Pick Related from the dropdown.

10. Select the Item you wish to remove. For example, run a search for ‘*twt_normal_print’, and return the
selected Item.

11. Set the Action of the new row to Remove.

12. Save, Unlock, and Close all items.

13. Log out and back in to see the changes.

6.3 Defining an Identity on the Button

1. Go to the Table of Contents: Administration > Configuration > Client Presentation.

2. Select Global Presentation Configuration.

3. In the Command Bar Section tab, right click on an Item with the location: Tearoff Window Toolbar >
View “Command Bar Section”.

 ©2022 Aras Corporation All Copyrights Reserved. 43

Aras Innovator 2023 Release

Programmer’s Guide

4. Lock the Command Bar Section for editing.

5. In the Command Bar Section tab, set your chosen Identity on the button of your choice.

6. Save, Unlock, and Close all items.

7. Log out and back in to see the resulting changes.

 ©2022 Aras Corporation All Copyrights Reserved. 44

Aras Innovator 2023 Release

Programmer’s Guide

7 Aras Innovator Methodology

This section is a summary of the Aras Innovator Methodology. Following this methodology helps you
build better quality Aras Innovator business logic more quickly; it is also easier to understand and
maintain the code.

• The AML is the language that drives the Aras Innovator Server.

• AML documents contain Items, Structure, and Logic, so they are scripts.

• The Aras Innovator Server is a message-based system in that it accepts AML scripts as messages
and returns AML messages. AML document, AML script, AML message all mean the same thing.

• The IOM is the Object API used to build and apply AML messages.

• Methods implement business logic using the IOM API.

• Methods extend the Item Class when used as "Item Action" relationships on the ItemType, which
simulates Object Oriented programming, where the ItemType is the Class and "Item Action"
relationships to Methods are the Class methods.

• Methods are also generic arbitrary business logic that can be called like a sub routine from other
Methods using the IOM Innovator.applyMethod(…) method.

• Methods follow the Item Factories design pattern; they should return a new Item and not side effect
the context Item.

• Server Events are the exception because the purpose is to intercept and operate on the AML before
the server parses it, and before the AML is returned to the client after the server parses it. You can
modify the context Item and return nothing.

• Implement changes/edits to the context Item in the OnBefore Event by altering the AML before the
server parses it. Refrain from attempting to update the context Item after the server has already
operated on it in the OnAfter Event. Use the OnAfter Events to update/include federated data in the
response AML.

• Use the select, page, and pagesize attributes for the AML queries to optimize the performance

for the request.

• Use the generic IOM methods to construct the AML queries rather than convenience methods like
getItemBy_, getRelationships(), or use the levels attribute because the convenience

methods typically return far more data than required imposing a performance hit.

• The context Item is the keyword this Object for JavaScript and C#, and the Me Object for VB.NET.

• The context Item for Generic Methods is any XML you want but it is highly recommended that you
continue to use AML to represent your data. This provides the benefit of using the IOM to manage
the input for the Generic Methods.

• Attributes are used to pass control switches to the Method. You can invent your own because they
are a simple way to pass meta-data to the Method.

 ©2022 Aras Corporation All Copyrights Reserved. 45

Aras Innovator 2023 Release

Programmer’s Guide

8 Cookbook

This section is a Cookbook of recipes to help you solve common tasks while developing Methods. The
examples are shown in JavaScript, C# and VB.NET when possible.

8.1 Create an Aras Innovator Object
You need an Aras Innovator Object to return a newResult() or newError() Item.

Technique

There are basically two ways to create a new Innovator object; by getting the Innovator from the Item
object or (only in JavaScript) calling the Class constructor.

JavaScript

var myInnovator = new Innovator();

var myInnovator = this.getInnovator();

C#

Innovator myInnovator = this.getInnovator();

8.2 Create an Item Object
You need an Item Object to submit a query or to add an Item.

Technique

There are basically two ways to create a new Item Object; by calling the factory methods on the Item
object or Innovator object or (only in JavaScript) calling the Class constructor.

JavaScript

var myItem = new Item();

var myItem = this.newItem(myType,myAction);

var myInnovator = this.getInnovator();

var myItem = myInnovator.newItem(myType,myAction);

var myResult = myInnovator.newResult(resultText);

var myError = myInnovator.newError(errorMessage);

C#

Item myItem = this.newItem(myType,myAction);

Innovator myInnovator = this.getInnovator();

Item myItem = myInnovator.newItem(myType,myAction);

Item myResult = myInnovator.newResult(resultText);

Item myError = myInnovator.newError(errorMessage);

 ©2022 Aras Corporation All Copyrights Reserved. 46

Aras Innovator 2023 Release

Programmer’s Guide

8.3 Query for an Item

You want to query for an Item that you know by id and type.

Technique

There are a few ways to get an Item when you know its id and type, the simplest being the
Innovator.getItemById() method. However, if you need to be granular about your request then

building the query using the IOM is required. This provides the ability to include controls to limit the
results and define the structure to be returned for the Items found.

JavaScript

var qryItem = this.newItem(myType,"get");

qryItem.setID(myId);

var results = qryItem.apply();

var myInnovator = this.getInnovator();

var results = myInnovator.getItemById(myType, myId);

C#

Item qryItem = this.newItem(myType,"get");

qryItem.setID(myId);

Item results = qryItem.apply();

Innovator myInnovator = this.getInnovator();

Item results = myInnovator.getItemById(myType, myId);

8.4 Query and Iterate Over a Set of Items

You want to query for the Items that match some criteria and generate an HTML Table as the result.

Technique

There is no difference in setting up a query for a single Item or for many. Only the criteria define the set
size returned. In this recipe you create an Item and populate the query criteria, apply it, and iterate over
the Items returned producing an HTML <TABLE> fragment.

JavaScript

var qryItem = this.newItem("Part","get");

qryItem.setAttribute("select","item_number,description,cost");

qryItem.setProperty("cost", "100");

qryItem.setPropertyCondition("cost", "gt");

var results = qryItem.apply();

var count = results.getItemCount();

var content = "<table>";

for (var i=0; i<count; ++i)

{

 var item = results.getItemByIndex(i);

 content += "" +

 "<tr>" +

 "<td>" + item.getProperty("item_number") + "</td>" +

 "<td>" + item.getProperty("description") + "</td>" +

 "<td>" + item.getProperty("cost") + "</td>" +

 ©2022 Aras Corporation All Copyrights Reserved. 47

Aras Innovator 2023 Release

Programmer’s Guide

 "</tr>";

}

content += "</table>";

return content;

C#

Item qryItem = this.newItem("Part","get");

qryItem.setAttribute("select","item_number,description,cost");

qryItem.setProperty("cost", "100");

qryItem.setPropertyCondition("cost", "gt");

Item results = qryItem.apply();

int count = results.getItemCount();

int i;

string content = "<table>";

for (i=0; i<count; ++i)

{

 Item item = results.getItemByIndex(i);

 content += "" +

 "<tr>" +

 "<td>" + item.getProperty("item_number") + "</td>" +

 "<td>" + item.getProperty("description") + "</td>" +

 "<td>" + item.getProperty("cost") + "</td>" +

 "</tr>";

}

content += "</table>";

Innovator innovator = this.getInnovator();

return innovator.newResult(content);

8.5 Query for an Item and Return Its Configuration

You want to query for an Item and return its configuration in the results.

Technique

To query for an Item and retrieve its structure you build the query as the structure you want returned.
Use the IOM methods to add the relationships you want and build the structure in the Item. The server
returns the structure that follows the request structure.

This recipe illustrates several related concepts together, which are how to get a set of Items from an Item
and how to iterate over the set, plus how to get the related Item from the relationship Item.

JavaScript

var innovator = this.getInnovator();

// Set up the query Item.

var qryItem = this.newItem("Part","get");

qryItem.setAttribute("select","item_number,description,cost");

qryItem.setID(myId);

// Add the BOM structure.

var bomItem = this.newItem("Part BOM","get");

bomItem.setAttribute("select","quantity,related_id(item_number,description,co

st)");

qryItem.addRelationship(bomItem);

 ©2022 Aras Corporation All Copyrights Reserved. 48

Aras Innovator 2023 Release

Programmer’s Guide

// Perform the query.

var results = qryItem.apply();

// Test for an error.

if (results.isError()) {

 top.aras.AlertError("Item not found: " + results.getErrorDetail());

 return;

}

// Get a handle to the BOM Items.

var bomItems = results.getRelationships();

var count = bomItems.getItemCount();

// Create the results content.

var content = "<table border='1'>" +

 "<tr>" +

 "<td>Part Number</td>" +

 "<td>Description</td>" +

 "<td>Cost</td>" +

 "<td>Quantity</td>" +

 "</tr>";

// Iterate over the BOM Items.

for (var i=0; i<count; ++i)

{

// Get a handle to the relationship Item by index.

 var bom = bomItems.getItemByIndex(i);

// Get a handle to the related Item for this relationship Item.

 var bomPart = bom.getRelatedItem();

 content += "<tr>" +

 "<td>" + bomPart.getProperty("item_number") + "</td>" +

 "<td>" + bomPart.getProperty("description") + "</td>" +

 "<td>" + bomPart.getProperty("cost") + "</td>" +

 "<td>" + bom.getProperty("quantity") + "</td>" +

 "</tr>";

}

return content + "</table>";

C#

Innovator innovator = this.getInnovator();

// Set up the query Item.

Item qryItem = this.newItem("Part","get");

qryItem.setAttribute("select","item_number,description,cost");

qryItem.setID(myId);

// Add the BOM structure.

Item bomItem = this.newItem("Part BOM","get");

bomItem.setAttribute("select","quantity,

related_id(item_number,description,cost)");

qryItem.addRelationship(bomItem);

// Perform the query.

 ©2022 Aras Corporation All Copyrights Reserved. 49

Aras Innovator 2023 Release

Programmer’s Guide

Item results = qryItem.apply();

// Test for an error.

if (results.isError()) {

 return innovator.newError("Item not found: " + results.getErrorDetail());

}

// Get a handle to the BOM Items.

Item bomItems = results.getRelationships();

int count = bomItems.getItemCount();

int i;

// Create the results content.

string content = "<table border='1'>" +

 "<tr>" +

 "<td>Part Number</td>" +

 "<td>Description</td>" +

 "<td>Cost</td>" +

 "<td>Quantity</td>" +

 "</tr>";

// Iterate over the BOM Items.

for (i=0; i<count; ++i)

{

// Get a handle to the relationship Item by index.

 Item bom = bomItems.getItemByIndex(i);

// Get a handle to the related Item for this relationship Item.

 Item bomPart = bom.getRelatedItem();

 content += "" +

 "<tr>" +

 "<td>" + bomPart.getProperty("item_number") + "</td>" +

 "<td>" + bomPart.getProperty("description") + "</td>" +

 "<td>" + bomPart.getProperty("cost") + "</td>" +

 "<td>" + bom.getProperty("quantity") + "</td>" +

 "</tr>";

}

content += "</table>";

return innovator.newResult(content);

8.6 Query Using AML to Construct the Query Criteria

You want to perform a query using the AML to construct the query criteria.

Technique

Create an Item Object but use the Item.loadAML() method to populate the Item.

JavaScript

var innovator = new Innovator();

var qryItem = innovator.newItem();

qryItem.loadAML(

 "<Item type='Part' action='get' select='item_number,description,cost'>" +

 "<item_number condition='like'>1%</item_number>" +

 ©2022 Aras Corporation All Copyrights Reserved. 50

Aras Innovator 2023 Release

Programmer’s Guide

 "<Relationships>" +

 "<Item type='Part BOM' action='get' select='quantity'>" +

 "<quantity condition='gt'>1</quantity>" +

 "</Item>" +

 "</Relationships>" +

 "</Item>"

);

var resultItem = qryItem.apply();

if (resultItem.isError()) {

 top.aras.AlertError("Item not found: " + resultItem.getErrorDetail());

 return;

}

var count = resultItem.getItemCount();

for (i=0; i<count; ++i) {

 var item = resultItem.getItemByIndex(i);

}

8.7 Query for the Item Next Promotion States

You want to get the next promotion states for an Item and use the states as the choices for a dropdown
control.

Technique

Use the item action getItemNextStates to get the next state values. This recipe assumes there is a

select input field on the form for us to populate with state values.

HTML

<select id="mySelect"></select>

JavaScript

var results = document.thisItem.apply("getItemNextStates");

var nextStates = results.getItemsByXPath('//Item[@type="Life Cycle State"]');

var count = nextStates.getItemCount();

var oSelect = document.getElementById('mySelect');

for (var i=0; i<count; ++i) {

 var item = nextStates.getItemByIndex(i);

 var opt = document.createElement('option');

 opt.text = item.getProperty('name');

 oSelect.add(opt);

}

 ©2022 Aras Corporation All Copyrights Reserved. 51

Aras Innovator 2023 Release

Programmer’s Guide

8.8 Query Using Relationships as Search Criteria
You want to search for an Item using the relationship and related Items as search criteria. In this recipe,
we get the User Item that matches the Identity name as an Alias relationship to the User Item.

Technique

The following are some key points to understand when constructing an AML query:

1. Use the get action on the relationship Items to include it as search criteria.

a. Without the get action the relationship Item is ignored as search criteria.

b. The relationship Items are also returned. Currently there is no way to use relationships as search
criteria and not return them in the results, as you can with the related Item described below.

2. Include the related_id property name in the select attribute for the relationship Item if you want to
return the related Item nested inside the related_id property in the results.

<Item type="Part BOM" select="quantity,related_id"/>

Use () to include the select attribute value for the related Item inside the select attribute for the
relationship Item.
<Item type="Part BOM" select="quantity,related_id(item_number,description)"/>

3. The select attribute for the nested Item tag for the related_id property has higher precedence over the
select value inside the () for the relationship's select attribute.

4. The get action is not required for the nested Item tag for the related_id property to include it as search
criteria.

These two AML scripts are equivalent queries for selecting the name property for the related
Item:
<Item type="User" action="get" select="first_name,last_name,email">

 <Relationships>

 <Item type="alias" action="get" select="related_id(name)"/>

 </Relationships>

</Item>

<Item type="User" action="get" select="first_name,last_name,email">

 <Relationships>

 <Item type="alias" action="get" select="related_id">

 <related_id>

 <Item type="Identity" action="get" select="name"/>

 </related_id>

 </Item>

 </Relationships>

</Item>

Clearly the first example is simpler and requires less coding (referring to the IOM logic that would
construct the AML) and is the recommended style when all you require is specifying a select for
the related Item for the query.
But the second style opens the opportunity to now include additional search criteria for the related
Item.

AML

<Item type="User" action="get" select="first_name,last_name,email">

 <Relationships>

 <Item type="Alias" action="get" select="related_id">

<!--

This get will limit root Items to only those that match the relationship

criteria.

The get action is required otherwise the criteria are ignored.

 ©2022 Aras Corporation All Copyrights Reserved. 52

Aras Innovator 2023 Release

Programmer’s Guide

To include the nested Item tag for the related_id include the property name

in the select attribute for the relationship Item.

Can include the select attribute value for the related Item inside ()

i.e. related_id(name)

-->

 <related_id>

 <Item type="Identity" action="get" select="keyed_name">

<!--

This get has no effect and the search will work with or without it.

It is recommended that you include it because the AML parser may be stricter

in the future.

The select attribute over rules the parent relationships select.

-->

 <name>Larry Bird</name>

 </Item>

 </related_id>

 </Item>

 </Relationships>

</Item>

JavaScript

var innovator = new Innovator();

var qry = innovator.newItem("User","get");

qry.setAttribute("select","first_name,last_name,email");

var alias = new Item("Alias","get");

alias.setAttribute("select","related_id");

var identity = new Item("Identity","get");

identity.setAttribute("select","name");

identity.setProperty("name", "Larry Bird");

alias.setRelatedItem(identity);

qry.addRelationship(alias) ;

var results = qry.apply();

if (results.isError()) {

 top.aras.AlertError(results.getErrorDetail());

 return;

}

8.9 Recursive Query on a Related Item
You want to perform a recursive query on a related item.

Technique

Use the GetItemRepeatConfig action to perform the query. For more information, refer to the table in
section 4.2 Built in Action Methods.

 ©2022 Aras Corporation All Copyrights Reserved. 53

Aras Innovator 2023 Release

Programmer’s Guide

AML

<Item type="Part" action="GetItemRepeatConfig"

select="item_number,name,major_rev,has_change_pending,state" id="{@id}">

<Relationships>

 <Item type="Part BOM" select="sort_order,quantity,_kit_flag,related_id"

repeatProp="related_id" repeatTimes="6"/>

</Relationships>

</Item>

8.10 Add an Item Configuration in One Transaction

You want to add an Item configuration like a BOM as one transaction.

Technique

Adding an Item configuration is done by building the Item structure using the IOM methods.

JavaScript

var innovator = new Innovator();

var partItem = innovator.newItem("Part","add");

partItem.setProperty("item_number", "123-456");

partItem.setProperty("description", "Blah blah");

var bomItem = new Item("Part BOM","add");

bomItem.setProperty("quantity", "10");

var relatedItem = new Item("Part","get");

relatedItem.setProperty("item_number", "555-555");

bomItem.setRelatedItem(relatedItem);

partItem.addRelationship(bomItem) ;

var resultItem = partItem.apply();

if (resultItem.isError()) {

 top.aras.AlertError(resultItem.getErrorDetail());

 return;

}

Technique

The following is the same thing but uses the Item.loadAML() method to populate the Item Object with
AML text.

JavaScript

var innovator = new Innovator();

var partItem = innovator.newItem();

partItem.loadAML(

 "<Item type='Part' action='add' >" +

 "<item_number>123-456</item_number>" +

 "<description>Blah blah</description>" +

 "<Relationships>" +

 "<Item type='Part BOM' action='add'>" +

 "<quantity>10</quantity>" +

 "<related_id>" +

 ©2022 Aras Corporation All Copyrights Reserved. 54

Aras Innovator 2023 Release

Programmer’s Guide

 "<Item type='Part' action='get'>" +

 "<item_number>555-555</item_number>" +

 "</Item>" +

 "</related_id>" +

 "</Item>" +

 "</Relationships>" +

 "</Item>"

);

var resultItem = partItem.apply();

if (resultItem.isError()) {

 top.aras.AlertError (resultItem.getErrorDetail());

 return;

}

8.11 Add a Named Permission

You want to add a new named Permission Item.

Technique

Use the Item Class Extended Method set to add a new Named Permission Item.

JavaScript

var innovator = new Innovator();

var permItem = innovator.newItem("Permission","add");

permItem.setProperty("name", "AK Part Permissions");

setIdentityAccess(permItem, "All Employees", "get", true);

setIdentityAccess(permItem, "CM", "get", true);

setIdentityAccess(permItem, "CM", "update", true);

setIdentityAccess(permItem, "CM", "delete", true);

resultItem = permItem.apply();

if (resultItem.isError()) {

 top.aras.AlertError(resultItem.getErrorDetail());

 return;

}

function setIdentityAccess(item, identityName, permType, accessState)

{

 var identity = item.newItem();

 identity.setType("Identity");

 identity.setAction("get");

 identity.setProperty("name", identityName);

 var access = item.newItem("Access","add");

 access.setProperty("can_"+permType, (accessState ? "1" : "0"));

 access.setRelatedItem(identity);

 item.addRelationship(access);

}

 ©2022 Aras Corporation All Copyrights Reserved. 55

Aras Innovator 2023 Release

Programmer’s Guide

8.12 Set a Private Permission for an Item

You want to set a new private Permission for an Item.

Technique

Use the Item Class Extended Method set to set a new private Permission for an Item.

JavaScript

// Set up the Part query

var innovator = new Innovator;

var qryItem = innovator.newItem("Part", "get");

qryItem.setAttribute("select", "id,permission_id");

qryItem.setAttribute("expand", "1");

qryItem.setAttribute("levels", "1");

qryItem.setPropertyCondition("item_number", "like");

qryItem.setProperty("item_number", "123%");

// Run the query and check for errors

var resultItem = qryItem.apply();

if (resultItem.isError()) {

 top.aras.AlertError(resultItem.getErrorDetail());

 return;

}

// Iterate over the Items returned and add the private permissions for each.

var count = resultItem.getItemCount();

for (i=0; i<count; ++i) {

 var item = resultItem.getItemByIndex(i);

 var permItem = item.getPropertyItem("permission_id");

 // Remove existing permissions first

 var accesses = permItem.getRelationships("Access");

 for (i=0; i<accesses.getItemCount(); i++) {

 var access = accesses.getItemByIndex(i);

 access.setAction("delete");

 }

 permItem.setProperty("name", permItem.getID());

 setIdentityAccess(permItem, "Component Engineering", "get", true);

 setIdentityAccess(permItem, "CM", "get", true);

 setIdentityAccess(permItem, "CM", "update", true);

 // Grant access to the current user's alias identity

 var myAlias = innovator.newItem("Alias","get");

 myAlias.setProperty("source_id", inn.getUserID());

 myAlias = myAlias.apply();

 var aliasId = myAlias.getItemByIndex(0).getProperty("related_id");

 var aliasName =

innovator.getItemById("Identity",aliasId).getProperty("name");

 setIdentityAccess(permItem, aliasName, "get", true);

 item.setAction("edit");

 resultItem = item.apply();

 ©2022 Aras Corporation All Copyrights Reserved. 56

Aras Innovator 2023 Release

Programmer’s Guide

 if (resultItem.isError()) {

top.aras.AlertError(resultItem.getErrorDetail()); }

}

function setIdentityAccess(item, identityName, permType, accessState)

{

 var identity = item.newItem();

 identity.setType("Identity");

 identity.setAction("get");

 identity.setProperty("name", identityName);

 var access = item.newItem("Access","add");

 access.setProperty("can_"+permType, (accessState ? "1" : "0"));

 access.setRelatedItem(identity);

 item.addRelationship(access);

}

8.13 Apply a Generic Method

You want to write Generic Methods that can be used as subroutines for other Methods.

Technique

Use the Innovator.applyMethod() method to apply Generic Methods. The following examples

assume a server-side method named "Reverse String" exists, and that it returns a result item containing
the reversed contents of the <string> tag.

JavaScript

var inn = this.getInnovator();

var results = inn.applyMethod("Reverse String", "<string>abc</string>");

return results.getResult(); // returns "cba"

C#

Innovator inn = this.getInnovator();

Item results = inn.applyMethod("Reverse String", "<string>abc</string>");

// Return a result item with "cba" as the contents of the Result tag

return inn.newResult(results.getResult());

8.14 Need to Save Text to a File

You want to save text to a file.

Technique

Use the File and StreamWriter namespaces to write to a text file.

 ©2022 Aras Corporation All Copyrights Reserved. 57

Aras Innovator 2023 Release

Programmer’s Guide

C#

Innovator myInnovator = this.getInnovator();

string path = CCO.Server.MapPath("temp/yoyo.txt");

try

{

 if (File.Exists(path)) File.Delete(path);

 StreamWriter sw = File.CreateText(path);

 sw.Write(this.dom.InnerXml);

 sw.Close();

}

catch (Exception e)

{

 return myInnovator.newError(e.Message);

}

return myInnovator.newResult("ok");

8.15 Need to Send Email from a Method

You want to send an Email message from either a server or client-side Method.

Technique

Use the Aras.IOM.Item.email(mail_item, idnt_item) method to send email to a particular Innovator’s
identity.

Note: Aras Innovator’s identity could be a group of people in which case the email is sent to all of them.

C#

...

// It’s assumed here that required identity (item of type ‘Identity’)

// has already obtained (see other examples on how to perform ‘get’

// requests to Innovator server using IOM). Same about item of type

// ‘User’ that represents the person who sends the email (‘fromUser’).

Item idnt = ...

Item fromUser = ...

// It’s assumed in the sample that this represents an item of

// type Part. ${Item/item_number} in the email message is a parameter

// that represents the XPath to the property item_number of

// item of type Part; this parameter will be substituted on

// this.item_number before the email is sent. Note that both

// subject and body of the email item could be parameterized.

// This mechanism allows to created parameterized email templates

// (items of type “Email Message”) that could be saved

// in Innovator and used for sending emails with concrete content

// when required.

string subject = "Part promotion notification";

string body = @"The part ${Item/item_number} has been promoted";

// In this particular example instead of getting a ready template

// email from the server a new item of type “EMail Message” is created

Item email_msg = this.newItem("EMail Message");

email_msg.setProperty("subject", subject);

 ©2022 Aras Corporation All Copyrights Reserved. 58

Aras Innovator 2023 Release

Programmer’s Guide

email_msg.setProperty("body_plain", body);

email_msg.setPropertyItem("from_user", fromUser);

// Finally send the email

if(this.email(email_msg, idnt) == false)

{

 // Error handling

 ...

}

8.16 Need a Callback for a Relationships Grid Row Event

You want to call a client side Method when the Relationships Grid row is selected to deselect the row if it
is not a new relationship row.

Technique

Add the Grid Event relationship to a Method as the callback for the OnSelectRow event.

The Method gets three arguments: relationshipID, relatedID and gridApplet. The relationshipID is the ID
for the relationship Item for the selected row. The relatedID is the ID for the related Item for the selected
row. The gridApplet is a handle to the grid control object.

 ©2022 Aras Corporation All Copyrights Reserved. 59

Aras Innovator 2023 Release

Programmer’s Guide

The relationshipID is also the ID for the grid control row. This recipe calls the gridApplet Deselect()
method if the relationship Item for the selected row has not been modified.

JavaScript

// The row ID is the same as the relationship ID

var rowId = gridApplet.getSelectedId();

// Find the relationship item and exit if it's not found

var thisItem = parent.thisItem;

var xpath = "Relationships/Item[@id='" + rowId + "']";

var relItem = thisItem.getItemsByXPath(xpath);

if (relItem.getItemCount() == 1) {

 relItem = relItem.getItemByIndex(0);

} else {

 return;

}

// Check the isDirty attribute to see if the relationship has been modified

var isDirty = (relItem.getAttribute("isDirty") == "1");

if (!isDirty) { gridApplet.Deselect(); }

8.17 Need a Callback for a Relationships Grid Cell Event

You want to call a client-side Method when the Relationships Grid cell is selected to blur the cell and
prevent editing the cell value.

Technique

Add the Event relationship to a Property as the callback for the OnEditCell event.

 ©2022 Aras Corporation All Copyrights Reserved. 60

Aras Innovator 2023 Release

Programmer’s Guide

The Method gets five arguments: relationshipID, relatedID, propertyName, colNumber, gridApplet

The propertyName is the name of the Property for the cell column selected, and colNumber is the column
position number in the grid.

Simple return false and this blurs the grid cell.

JavaScript

// Get the current value of the cell

var cellValue = gridApplet.GetCellValue(relationshipID,colNumber);

// If the cell already has a value, disallow editing

if (cellValue !== "") {

 return false;

}

8.18 Show Relationships in a Grid Control on the Form

You want to show the relationships for the context Item in a Grid control on the Item Form.

Technique

Add an HTML Field (positioned at Point (300,10) in the code sample below) and insert an HTML code
than defines the <div>tag to hold the dynamically populated grid and the JavaScript to get the populating
grid relationships.

HTML Field code

<div id="gridTD" style="width: 400px; height: 500px;"></div>

<script type="text/javascript">

 var myCount = 0;

 var gridControl;

clientControlsFactory.createControl("Aras.Client.Controls.Public.GridContaine

r", {id: "grid", connectId: "gridTD", canEdit_Experimental: function () {

return false; }}, function(control){

 gridControl = control;

 clientControlsFactory.on(gridControl, {

 "gridClick": function (rowID, column) {

 alert("rowId:" + rowID + ", col:" + column);

 }

 });

 fillGrid();

 });

 function fillGrid() {

 var item = document.thisItem;

 // Get the relationships

 var qry = item.newItem("Part BOM", "get");

 qry.setAttribute("select", "quantity,related_id(item_number,name,cost)");

 qry.setProperty("source_id", item.getID());

 var results = qry.apply();

 if (results.getItemCount() < 0) {

 top.aras.AlertError(results.getErrorDetail());

 return;

 }

 // Populate the grid with the results.

 populateGrid(item, results);

 ©2022 Aras Corporation All Copyrights Reserved. 61

Aras Innovator 2023 Release

Programmer’s Guide

 }

 function populateGrid(item, results) {

 var propNameArr = new Array("item_number", "name", "cost");

 var gridXml =

 "<table editable='false' draw_grid='true'>" +

 "<columns>" +

 "<column width='30%' order='0' align='left' />" +

 "<column width='40%' order='1' align='left' />" +

 "<column width='15%' order='2' align='right' />" +

 "<column width='15%' order='3' align='right' />" +

 "</columns>" +

 "<thead>" +

 "<th>Part Number</th>" +

 "<th>Name</th>" +

 "<th>Cost</th>" +

 "<th>Quantity</th>" +

 "</thead>" +

 "</table>";

 var inn = item.getInnovator();

 var gridDom = inn.newXMLDocument();

 gridDom.loadXML(gridXml);

 var tableNd = gridDom.selectSingleNode("/table");

 var c = results.getItemCount();

 for (var i=0; i<c; ++i) {

 var bom = results.getItemByIndex(i);

 var part = bom.getRelatedItem();

 var trNd = gridDom.createElement("tr");

 trNd.setAttribute("id", bom.getID());

 var tdNd;

 for (var j=0; j<propNameArr.length; j++) {

 tdNd = gridDom.createElement("td");

 tdNd.text = part.getProperty(propNameArr[j]);+

 trNd.appendChild(tdNd);

 }

 tdNd = gridDom.createElement("td");

 tdNd.text = bom.getProperty("quantity");

 trNd.appendChild(tdNd);

 tableNd.appendChild(trNd);

 }

 gridControl.InitXML(gridDom.xml);

 } </script>

8.19 Want the Identities for the User

You want to get the Identity IDs for the User.

Technique

Use the classic Aras Innovator API top.aras.getIdentityList() method, which returns a comma delimited
string of IDs.

Note: The classic API will eventually be eliminated, and this method will become available on the IOM

Innovator object as Innovator.getIdentityList().

 ©2022 Aras Corporation All Copyrights Reserved. 62

Aras Innovator 2023 Release

Programmer’s Guide

JavaScript

// This will get an array of identity IDs from the client cache

var myIdentityIDs = top.aras.getIdentityList().split(',');

8.20 Want a Field to Either Be a Sequence or User Entered
Value

You want to enable a field on the form to be a sequence value or allow the user to enter a value.

Technique

Use the classic Aras Innovator API top.aras.getNetSequence() method, which returns the next sequence
value from the server.

Note: The classic API will eventually be eliminated, and this method will become available on the IOM

Innovator object as Innovator.getNetSequence().

Using the Form Tool we add an HTML Field to the Form, which we use to insert the HTML and JavaScript
code for to provide the button to get the next sequence value and update the Field value and client cache.

HTML Field Code

 <img src="../images/Sequence.svg" border="0" style="max-width: 20px; max-

height: 20px;">

<script>

 function getNextNumber() {

 // Get the next sequence value.

 var seq = top.aras.getNextSequence("","Default Part");

 // This will update the client cache with the new value.

 handleItemChange("item_number", seq);

 }

</script>

8.21 Want to Vault a File

You want to save a CAD Document with an attached Native File.

Technique

You will need to use the setFileProperty call which handles creating a file and sets the associated

value on the specified property.

Client-side methods use selectFile()that gets a File object based on user selection:

Javascript

 var vlt = top.aras.vault;

 vlt.selectFile().then(function (fileObject)

 {

 var d = aras.IomInnovator.newItem("CAD", "add");

 d.setProperty("item_number", "007");

 d.setFileProperty("native_file", fileObject);

 ©2022 Aras Corporation All Copyrights Reserved. 63

Aras Innovator 2023 Release

Programmer’s Guide

 d.apply();

 });

Server-side methods require a string for the physical path to the file. The file must be on the server
machine.

C#

 Item d = this.newItem("CAD", "add");

 d.setProperty("item_number", "007");

 d.setFileProperty("native_file", @"C:\myFile.txt");

 return d.apply();

8.22 Want to get an Existing Vaulted File and Save it with a
New Document

You want to get an existing File from the Vault and attach it to a new Document

Technique

This is similar to the last recipe, but uses the getItemByKeyedName() method to get an existing File

Item and copyAsNew() to create it as a new File Item.

JavaScript

// Create the Document item

var docItem = this.newItem("Document","add");

docItem.setProperty("item_number","456");

// Get the File item

var innovator = this.getInnovator();

var fileItem = innovator.getItemByKeyedName("File","My Document.doc");

if (fileItem.isError()) {

 top.aras.AlertError(fileItem.getErrorDetail());

 return;

}

// Duplicate File Item as files should be 1 to 1

var newFile = fileItem.apply("copyAsNew");

// Create the relationship between the Document and File

var relItem = this.newItem("Document File","add");

docItem.addRelationship(relItem);

relItem.setRelatedItem(newFile);

var results = docItem.apply();

if (results.isError()) {

 top.aras.AlertError(results.getErrorDetail());

} else {

 // Show the new Document

 top.aras.uiShowItemEx(results.getItemByIndex(0).node, 'tab view', true);

}

 ©2022 Aras Corporation All Copyrights Reserved. 64

Aras Innovator 2023 Release

Programmer’s Guide

8.23 Need to Reject an Item Promote

You want to reject an Item Promote if a value of Property is invalid.

Technique

Use the Pre Server-Method on the Life Cycle Transition to call a server-side Method to validate the Item
before it is promoted and if invalid rejects the Promote by returning an Error Item.

C#

Innovator innovator = this.getInnovator();

if (Convert.ToDecimal(this.getProperty("cost")) > 500) {

 Item error = innovator.newError("Error promoting: Item costs more than

$500.00");

 return error;

}

return this;

8.24 How to Handle Multilingual Properties
You want to programmatically get/set multilingual string properties

Technique

Use Item.setAttribute("language","*") to get all language values and
Item.setProperty(myProperty,value,lang) to set specific language values.

 ©2022 Aras Corporation All Copyrights Reserved. 65

Aras Innovator 2023 Release

Programmer’s Guide

JavaScript

var inn = this.getInnovator();

// Add a new List with multilingual Value labels

var listItem = this.newItem("List","add");

listItem.setProperty("name","Numbers");

var valueItem = listItem.createRelationship("Value","add");

valueItem.setProperty("value","1");

valueItem.setProperty("label","One","en");

valueItem.setProperty("label","Ein","de");

var valueItem2 = listItem.createRelationship("Value","add");

valueItem2.setProperty("value","2");

valueItem2.setProperty("label","Two","en");

valueItem2.setProperty("label","Zwei","de");

var resultItem = listItem.apply();

if (resultItem.isError()) {

 return inn.newError("Error adding List: " + resultItem.getErrorDetail());

}

// Retrieve the List with labels in both English and German

listItem = this.newItem("List","get");

listItem.setProperty("name","Numbers");

valueItem = listItem.createRelationship("Value","get");

valueItem.setAttribute("language","en,de");

resultItem = listItem.apply();

if (resultItem.isError()) {

 return inn.newError("Error retrieving List: " +

resultItem.getErrorDetail());

}

8.25 How to Handle Date Properties

You want to programmatically get/set date properties

Technique

Convert date values to "yyyy-MM-ddThh:mm:ss" format before setting the property

JavaScript

// Get yesterday's date

var myDate = new Date();

myDate.setDate(myDate.getDate()-1);

// Find all methods edited in the past 24 hours

var myItem = this.newItem("Method","get");

myItem.setAttribute("select","name");

myItem.setProperty("modified_on",dateFormat(myDate));

myItem.setPropertyAttribute("modified_on","condition","gt");

myItem = myItem.apply();

// Loop through the returned methods and return the list

var methodList = new String("");

for (var i=0; i<myItem.getItemCount(); i++) {

 methodList += myItem.getItemByIndex(i).getProperty("name","") + ", ";

 ©2022 Aras Corporation All Copyrights Reserved. 66

Aras Innovator 2023 Release

Programmer’s Guide

}

top.aras.AlertError("The following methods were modified in the past 24

hours: "+methodList.substr(0,methodList.length-2));

function dateFormat(d) {

 var dateString = d.getFullYear()+"-";

 dateString += pad(d.getMonth()+1)+"-";

 dateString += pad(d.getDate())+"T";

 dateString += pad(d.getHours())+":";

 dateString += pad(d.getMinutes())+":";

 dateString += pad(d.getSeconds());

 return dateString;

}

function pad(x) {

 return (x<10) ? "0"+x : ""+x;

}

C#

Innovator inn = this.getInnovator();

// Get yesterday's date

DateTime myDate = DateTime.Today.AddDays(-1);

// Find all methods edited in the past 24 hours

Item myItem = inn.newItem("Method","get");

myItem.setAttribute("select","name");

myItem.setProperty("modified_on",myDate.ToString("yyyy-MM-ddThh:mm:ss"));

myItem.setPropertyAttribute("modified_on","condition","gt");

myItem = myItem.apply();

// Loop through the returned methods and return the list

string methodList = "";

int myItemCount = myItem.getItemCount();

for(int i = 0; i < myItemCount; i++){

 methodList += myItem.getItemByIndex(i).getProperty("name","") + ", ";

}

return inn.newError("The following methods were modified In the past 24

hours: " + methodList);

 ©2022 Aras Corporation All Copyrights Reserved. 67

Aras Innovator 2023 Release

Programmer’s Guide

8.26 How to Pass Values from onBeforeX to onAfterX Events
You want to pass some value from an onBefore (i.e., onBeforeUpdate) event to an onAfter (i.e.,
onAfterUpdate) event for data process handling.

Technique

Use the built-in function to add a variable, read a variable and remove a variable from the RequestState.
This sample determines if there was a change made to the “Name” property of Part.

C#

OnBeforeUpdate event

//Get Part Name before change

Innovator inn = this.getInnovator();

Item myPart = inn.newItem("Part","get");

myPart.setID(this.getID());

myPart.setAttribute("select","name");

myPart=myPart.apply();

string prevName = myPart.getProperty("name");

RequestState.Add("prevName", prevName); //Add value to SessionState

return this;

OnAfterUpdate event

string prevName = (string)RequestState["prevName"];

string curName = this.getProperty("name");

if (prevName != curName)

{

 //Do some logic here

}

//Perform cleanup of RequestState

RequestState.Remove("prevName"); //removes single key

// to remove all keys use RequestState.Clear();

return this;

8.27 How to Reference Custom DLL from Server Method

You want to reference a custom library from inside an Aras Innovator Server Method.

Technique

Create a custom DLL that references the IOM. This DLL is then added to the BIN folder and referenced
in the method-config.xml, allowing it to be called from a server-side method.

 ©2022 Aras Corporation All Copyrights Reserved. 68

Aras Innovator 2023 Release

Programmer’s Guide

Create the Custom DLL

To create the custom DLL, it is necessary to create a Visual Studio C# class library project using .NET
6.0. The project needs to reference the IOM of the version of Aras Innovator you are connecting to.

Class Code

namespace CookBookCustomDLL

{

 public class CustomDLLFunct

 {

 public static string returnUser(Innovator inn)

 {

 string userID = inn.getUserID();

 return userID;

 }

 }

}

Code tree setup with new DLL

Once you have created the DLL and built the assembly, you need to use the following steps to add the
DLL to your Aras Innovator code tree

1. Copy the CookBookCustomDLL.dll and CookBookCustomDLL.pdb into the \Innovator\Server\bin
folder.

2. Open the \Innovator\Server\Method-Config.xml for editing and add the highlighted line.
...

<ReferencedAssemblies>

 <name>$(binpath)/Aras.Server.Core.dll</name>

 <name>$(binpath)/Aras.TDF.Base.dll</name>

 <name>$(binpath)/Aras.TDF.Base.Extensions.dll</name>

 <name>$(binpath)/Conversion.Base.dll</name>

 <name>$(binpath)/ConversionManager.dll</name>

 <name>$(binpath)/FileExchangeService.dll</name>

 <name>$(binpath)/IOM.dll</name>

 <name>$(binpath)/Newtonsoft.Json.dll</name>

 <name>$(binpath)/SixLabors.ImageSharp.dll</name>

 <name>$(binpath)/Microsoft.Data.SqlClient.dll</name>

 <name>Microsoft.Extensions.Logging.Abstractions.dll</name>

 <name>$(binpath)/CookBookCustomDLL.dll</name>

...

3. Search for the <Template> tag for the language you are using and include the additional

namespace you need by adding additional "using" lines.

When adding lines, make sure you update the line_number_offset for accurate debugging

messages.

 <Template name="CSharp" line_number_offset="37">

 <![CDATA[

using System;

…

using CookBookCustomDLL;

4. Save the Method-Config.xml

 ©2022 Aras Corporation All Copyrights Reserved. 69

Aras Innovator 2023 Release

Programmer’s Guide

Call new DLL from Innovator Server method.

Code snippet that can be used as a reference for how to call your assembly and function.

Code Snippet

Innovator inn = this.getInnovator();

string userID = CustomDLLFunct.returnUser(inn);

8.28 How to Add Sub Menus to Context Menu in Search Grid
There is the possibility of adding sub menus to the context menu in the search grid of Aras Innovator
menu items.

Aras.Client.Controls.ContextMenu control supports submenus. It provides two methods for

adding menu items:

1. add(id, label, parentMenuId, args);

2. addRange(items, parentMenuId);

The following are the examples given for itemsGrid.html:

Example #1

var menu = grid.getMenu();

menu.add("item_0", "Item 0");

menu.add("item_0.0", "Item 0.0", "item_0", { onClick: function () { alert(0);

} });

menu.add("item_0.1", "Item 0.1", "item_0", { onClick: function () { alert(1);

} });

menu.add("item_0.2", "Item 0.2", "item_0", { onClick: function () { alert(2);

} });

Example #2

var menu = grid.getMenu(),

 subMenus = [

 {

 id: "item_0.0",

 name: "Item 0.0",

 onClick: function () { alert(0); }

 },

 {

 id: "item_0.1",

 name: "Item 0.1",

 onClick: function () { alert(1); }

 },

 {

 id: "item_0.2",

 name: "Item 0.2",

 onClick: function () { alert(2); }

 }

];

menu.add("item_0", "Item 0");

menu.addRange(subMenus, "item_0");

 ©2022 Aras Corporation All Copyrights Reserved. 70

Aras Innovator 2023 Release

Programmer’s Guide

8.29 How to Create a Dynamic List

Use the following code to create and populate a dynamic list:

var listDropdown = getFieldComponentById("{ID}");

//var listDropdown = getFieldComponentByName("{NAME}");

//you can use either getFieldComponentByName or getFieldComponentById to find

the list

function addOption(selectbox, txt, val){

 var options = selectbox.component.state.list

 options.push({label: txt, value: val})

 selectbox.component.setState({list: options});

}

function removeOption(selectbox, val) {

 var options = selectbox.component.state.list

 for (var i = 0; i < options.length; i++) {

 if (options[i].value == val) {

 options.splice(i, 1)

 break;

 }

 }

 selectbox.component.setState({

 list: options

 });

}

You can add and remove options using the following:

addOption(listDropdown, “option 1”, “opt-1”);removeOption(listDropdown, “opt-1”);

 ©2022 Aras Corporation All Copyrights Reserved. 71

Aras Innovator 2023 Release

Programmer’s Guide

8.30 How to Download a File from Aras Innovator to a Client
Machine

The purpose of the aras.downloadFile is to download a file from Aras Innovator to a client machine. This
function is a Javascript function and can only be called from a client-side Method.

The function takes in up to two properties:

• fileNd – an XML Node of the File to be downloaded. It contains the filename, ID, and all pertinent
properties.

• preferredName – (Optional) a string to replace the file’s name during download.

let item = aras.newIOMItem('File', 'get');

 ...

 item = item.apply();

 aras.downloadFile(item.node, 'sample.txt');

8.31 How to Convert Strings
The ArasModules.xml.parseString function takes a string and converts it into an XmlDOMDocument.

The function takes the following argument:

• itemND – a string that conforms to a valid XML structure.

...

 let document = ArasModules.xml.parseString('<Item action="get"

 type="File"><filename>sample.txt</filename></Item>');

 ...

8.32 How to Load an XML File URL

The ArasModules.xml.parseFile function loads the URL of an XML file into a local XmlDOMDocument
object.

The function takes the following argument:

• url – a valid URL for an XML file.

...

let document =

ArasModules.xml.parseFile('http://sampleserver/samplexml.xml');

...

8.33 How to Create a List of Nodes

ArasModules.xml.selectNodes selects a list of nodes that match the query. It functions identically to the
standard XmlDOMDocument.selectNodes(xPathString).

The function takes the following arguments:

• xmlDocument – a valid XML document.

• nodeName – the name of a node in the xmlDocument.

...

let xmlNodes = ArasModules.xml.selectNodes(xmlDoc, 'sample');

...

 ©2022 Aras Corporation All Copyrights Reserved. 72

Aras Innovator 2023 Release

Programmer’s Guide

8.34 How to Select a Single Node
ArasModules.xml.selectSingleNode selects the first XML node that matches the XPath expression. It
functions identically to the standard XmlDOMDocument.selectSingleNode(xPathString).

The function takes the following arguments:

• xmlDocument – a valid xmlDocument.

• nodeName – The name of a node in the xmlDocument.

...

let xmlSingleNode = ArasModules.xml.selectSingleNode(xmlDoc, "created_on");

...

8.35 How to Transform a Node
ArasModules.xml.transform processes the document node using the specified XSL stylesheet. It functions
identically to the standard XmlDOMDocument.transformNode(objXSLTStylesheet).

The function takes the following arguments:

• xmlDocument – a valid XmlDOMDocument.

• xsltStylesheet – a valid XSLT stylesheet that is applied to the xmlDocument.

...

let transformedXmlDocument = ArasModules.xml.transform(xmlDoc,

xsltStylesheet);

...

8.36 How to Create a NodeType

ArasModules.xml.createNode creates a NodeType. It functions identically to the standard
XmlDOMDocument.createNode(Type, name, namespaceURL).

The function takes the following arguments:

• xmlDocument – a valid XmlDOMDocument.

• Type – The IXMLDOMNodeType that is being applied. For example, 1 is a NODE_ELEMENT.

• Name – The name of the NodeType being created.

• url – A string defining the namespace URL.

...

let newNode = ArasModules.xml.createNode(xmlDoc, 1, 'sample', '');

...

8.37 How to Get Text Associated with a Node
ArasModules.xml.getText retrieves the text from an XmlDOMDocument object node.

The function takes the following argument:

• xmlNode – A valid XmlDocument object’s node.

...

let nodeValue = ArasModules.xml.getText(xmlNode);

...

 ©2022 Aras Corporation All Copyrights Reserved. 73

Aras Innovator 2023 Release

Programmer’s Guide

8.38 How to Set Text for a Node

ArasModules.xml.setText sets the text for an XmlDOMDocument object node.

The function takes the following arguments:

• xmlNode – a validXmlDOMDocument object’s node.

• nodeValue – The value to be inserted into the node.

...

ArasModules.xml.setText(xmlNode, 'sample');

...

8.39 How to Convert an Object into a String

ArasModules.xml.getXml converts an XmlDOMDocument object into a string.

The function takes the following argument:

• xmlDocument – a valid XmlDocument.

...

let xmlString = ArasModules.xml.getXml(xmlDoc);

...

8.40 How to Return an Error

ArasModules.xml.getError returns an error when given an XMLDOMDocument object.

The function takes the following argument:

• xmlDocument – A valid XmlDocument.

...

 var error = ArasModules.xml.getError(xmlDoc);

 if (error.errorCode !== 0) {

 return aras.getResource('', 'tz.parse_update_fail_details',

error.reason);

 }

...

8.41 How to Use the “Validate” Data Store Event
The following sample code demonstrates how to prevent a user from updating a property in the data
store. Validate event methods have the following parameters available:

• itemId – the GUID of the current context item

• name – the name of the property being updated

• value – the property value being validated. For item properties, this is an object with the selected
item’s id, type, and keyedName.

 ©2022 Aras Corporation All Copyrights Reserved. 74

Aras Innovator 2023 Release

Programmer’s Guide

8.41.1 Example 1

Use Case: We don’t want users to update prop_a anywhere in the client – on forms, relationship grids, or
search grids.

Solution: Create the following method and configure it as a Validate event on prop_a of an ItemType.

...

if (name === 'prop_a') {

 return {

 valid: false,

 validationMessage: `${name} property can't be changed`

 };

}

...

8.41.2 Example 2

Use Case: The owner and manager of an item cannot be the same identity.

Solution: Create the following method and configure it as a Validate event on both the owned_by_id and
managed_by_id properties of an ItemType.

...

const currentItem = aras.itemsCache.getItem(itemId) ||

aras.itemsCache.getItemByXPath(`//Item[@id="${itemId}"]`);

const owner = aras.getItemProperty(currentItem, 'owned_by_id', '');

const manager = aras.getItemProperty(currentItem, 'managed_by_id', '');

// one or both of the fields may be null

if (value === null) {

 return {

 valid: true

 };

}

if (owner === value.id || manager === value.id) {

 return {

 valid: false,

 validationMessage: `Cannot update ${name}. Owner and manager cannot

be the same.`

 };

}

return {

 valid: true

};

...

 ©2022 Aras Corporation All Copyrights Reserved. 75

Aras Innovator 2023 Release

Programmer’s Guide

8.42 How to Use the “Change” Data Store Event
The following sample code demonstrates how to update a property’s value in the data store. Change
event methods have the following parameters available:

• itemId – the GUID of the current context item

• name – the name of the property being updated

• value – the property value being validated. For item properties, this is an object with the selected
item’s id, type, and keyedName.

Use Case: All Parts with the “Software” classification should have a name prefixed with “SW – “.

Solution: Create the following method and configure it as a Change event on the name property of the
Part ItemType.

...

const itemNode = aras.itemsCache.getItem(itemId) ||

aras.itemsCache.getItemByXPath(`//Item[@id="${itemId}"]`);

if (aras.getItemProperty(itemNode, 'classification', '') !== 'Software') {

 return;

}

const prefix = 'SW - ';

if (value.substring(0,5) === prefix) {

 return;

}

aras.setItemProperty(itemNode, name, prefix + value);

...

 ©2022 Aras Corporation All Copyrights Reserved. 76

Aras Innovator 2023 Release

Programmer’s Guide

8.43 How to Use Different Data Types for Federated
Properties

Federated property is used for Item types to access data from an external system instead of the Aras
Innovator database. It can be configured via turning the Federated flag on, but not all data types are
supported. Currenty the following data types can be used for Federated properties:

• Integer.

• Text.

• Date. It is expected that the date value is set in Item according to the neutral format of Innovator
yyyy-MM-ddTHH:mm:ss (or yyyy-MM-dd) in the current TZ in local or Corporate TimeZone (if
Corporate TimeZone is set). Otherwise, the correct work of federated dates with other logic of
Innovator (e.g., presentation in the Client) cannot be guaranteed. The customization developers
should consider the potential differences in the date format and TimeZones of Innovator Server and a
Federated System and implement corresponding adjustments before setting the value to Innovator
Items (especially in cases when time part is important). As recommendation: custom approach to
convert dates from the TZ of Federated System to UTC can be implemented and then call IOM
method ConvertUtcDateTimeToNeutral which will produce the result in a proper format and TZ for
Innovator.

 ©2022 Aras Corporation All Copyrights Reserved. 77

Aras Innovator 2023 Release

Programmer’s Guide

And in the opposite direction when data should be sent from Innovator to Federated System, IOM
method ConvertNeutralToUtcDateTime will provide the datetime in UTC and then the customization
logic (if needed) will adjust it to the TZ of Federated System (see page "Data Flow-2a-FS-NoCorpTZ"
in the attached excel file "Date - Pattern and TZ" for illustrations of data flows)

Propery setting Pattern (pattern) for date properties is used only in Innovator Client to present the
date value for the end user with the order of display for month, day and year following
internationalization and localization rules dependent on client settings.

• Float. IOM means i18NSessionContext.ConvertToNeutral can be used to convert strings with float
values to neutral format to prepare float string in proper format if needed. Please do not specify
Precision and Scale for federated Float properties to avoid inconsistent restrictions on the client side.

• String. For regular String properties there are two special settings in Innovator:

o Length (stored_length) – required, the maximum length of the string property

o Pattern (pattern) – optional, is used to prepare a Regex (ignore-case, single line) which the
property value should match

It's up to the Administrator/Developer creating the federated String property to set it up in Innovator
according to the specification and requirements of the Federated System. Innovator's Client will provide
built-in validation based on these settings for bi-directional data exchange. As for additional validation in
Innovator Server, the Developers can implement it themselves in OnBeforeAdd/Update or OnAdd/Update
event handlers before sending the data with the string property value to the Federated System.If a
federated property is supposed just to show information from the Federated System and no input is
expected on Innovator side, then set Readonly setting for the federated property to true.

 ©2022 Aras Corporation All Copyrights Reserved. 78

Aras Innovator 2023 Release

Programmer’s Guide

9 Aras Innovator Solution Studio

The Aras Innovator Solution Studio is the user interface you use to author the code for your Innovator
Methods. It is automatically launched when you open a Method Item in Aras Innovator client.

9.1 Features
The Solution Studio offers several useful features to help aid you in the development of your Methods.

• A robust text editor with search/replace and undo/redo capabilities.

• Color coding the keywords for the language you are developing in.

• An IOM API code guide.

• An online help interface that is context sensitive for the methods selected in the code guide.

• Syntax checking based on the language you are developing in.

Syntax checker

IOM API Code

Guide

Search/Replace

Undo/Redo

Keyword Color

Coding

IOM API Online

Help

 ©2022 Aras Corporation All Copyrights Reserved. 79

Aras Innovator 2023 Release

Programmer’s Guide

10 Debugging

Aras Innovator has the following features for debugging/logging your Methods:

• Visual Studio to debug Methods either client or server.

• Logging of debug messages to an XML formatted log file.

10.1 Enabling Debugging in Aras Innovator
Server method debugging is disabled by default in Aras Innovator. This setting saves disk space as the
temporary dlls used for debugging the methods do not need to be created.

To enable the debugging of Server Methods, you can add the following line to your
“InnovatorServerConfig.xml”, located in the root folder of your installation.

 <operating_parameter key="DebugServerMethod" value="true" />

 Server method debugging can then be disabled again by changing the value of this line to false.

After changing this value, you should restart IIS to confirm the change is applied.

10.2 Setting up Visual Studio to Debug Server-Side Methods

1. Open "Microsoft Visual Studio .NET" debugger.

2. Choose Tools --> Attach to Processes….

 ©2022 Aras Corporation All Copyrights Reserved. 80

Aras Innovator 2023 Release

Programmer’s Guide

3. Choose w3wp.exe and click 'Attach'.

4. Choose Debug --> Exceptions to force the method into the debugger when an exception occurs and
choose the check boxes "Thrown".

5. Optionally, you can include the line System.Diagnostics.Debugger.Break() to force a

breakpoint at a specific line in your method.

 ©2022 Aras Corporation All Copyrights Reserved. 81

Aras Innovator 2023 Release

Programmer’s Guide

10.3 Debugging Client-side Methods
1. Include the line debugger, to your Method.

2. Press the F12 key while in your Internet Browser, or right-click and select ‘Inspect’, or ‘Inspect
Element’. This will open a new dialog.

3. Perform the action that runs the method code, and the code should pause itself once it reaches the
debugger, statement.

4. Afterwards, you can press F8 to continue running normally, F10 to perform another step of method
code, and find javascript variable values using the Debugger Console.

10.4 Setting up the Server-side Logging
Add the following lines to the InnovatorServerConfig61.xml file:

 <operating_parameter key="debug_log_flag" value="true" />

 <operating_parameter key="debug_log_prefix" value="C:/TEMP/DEBUG-" />

 <operating_parameter key="debug_log_limit" value="1000" />

To write messages to the C:/TEMP/DEBUG-* log file, add the following line of code to the server-side
method:

CCO.Utilities.WriteDebug("logFileName", "logMessage");

 ©2022 Aras Corporation All Copyrights Reserved. 82

Aras Innovator 2023 Release

Programmer’s Guide

11 External APIs

There are a few ways to connect to the Aras Innovator server from other applications. Aras provides two
assemblies (.NET and COM-compatible) that implement the IOM API and can be used by other
applications. Alternatively, simple SOAP communication can be used to connect to Aras Innovator.

11.1 .NET IOM
A .NET version of IOM.dll can be found in the \Utilities\Aras Innovator <Version> IOM

SDK\.NET directory on the CD Image. You can copy this to another location and reference it using .NET

project. IOM APIs belong to Aras.IOM namespace. First, every application must create a connection with
the Aras Innovator server and login to the Aras Innovator server using the connection. If the login
succeeds, then an instance of the Innovator class must be created with the connection.

Here is a small sample:

…

using Aras.IOM;

…

String url = "https://myserver/MyInnovator/Server/InnovatorServer.aspx";

// database, username and password values should be entered by user

String db;

String userName;

String password;

HttpServerConnection conn =

IomFactory.CreateHttpServerConnection(url, db, userName, password);

Item login_result = conn.Login();

if(login_result.isError())

throw new Exception("Login failed");

Innovator inn = IomFactory.CreateInnovator(conn);

…

Note: You can pass either encrypted (if required, use static method Innovator.ScalcMD5(string

pwd) for encryption) or non-encrypted password (as shown in the previous example) to the

method IomFactory.CreateHttpServerConnection(…). If you pass a non-encrypted

password, it’ll be encrypted inside the method. Otherwise, the password is passed to the server

without modifications.

It’s highly recommended to logout of Aras Innovator prior to exiting the application:

…

conn.Logout();

…

11.1.1 Obtaining an Access Token

The IOM API for authentication supports multiple authentication grants to obtain access token: a
Resource Owner Password Credentials grant (further on Password grant), an Authorization Code grant
and our custom Impersonate grant (a custom grant based on Client Credentials grant). You can use an
obtained access token in subsequent requests to the Aras Innovator server.

Note: See more about OAuth 2.0 authorization grants in the OAuth 2.0 RFC specification:

https://tools.ietf.org/html/rfc6749#section-4. Refer to the Impersonate grant chapter for more

information.

https://tools.ietf.org/html/rfc6749#section-4

 ©2022 Aras Corporation All Copyrights Reserved. 83

Aras Innovator 2023 Release

Programmer’s Guide

The IOM API for authentication includes a public ITokenProvider interface and its default
implementations: PasswordTokenProvider, ImpersonateTokenProvider, AuthorizationFlowTokenProvider
and WindowsTokenProvider. If the default implementation does not cover your needs, it is possible to
provide a custom implementation of the ITokenProvider.

Warning Before creating a token provider, it is necessary to get a DiscoveryDocument that contains

information about OAuth server configuration.

11.1.1.1 Discovery of OAuth Server

The Discovery mechanism allows clients to find the OAuth server and request its configuration.

The IOM OAuth API includes a public IDiscoveryDocumentProvider interface and its default
implementation of the DiscoveryDocumentProvider.

DiscoveryDocumentProvider does the following:

1. Sends a request to http://<company.net>/<Innovator>/Server/OAuthServerDiscovery.aspx to
determine the OAuth server location. OAuth server URLs are specified in InnovatorServerConfig.xml
and look like the following:

<OAuthServerDiscovery>

<Urls>

 <Url value="http://company.net/Innovator/OAuthServer/" />

 <!-- Url value="http://company.local/Innovator/OAuthServer/" /-->

</Urls>

</OAuthServerDiscovery>

2. Requests the OAuth server discovery configuration.

The DiscoveryDocumentProvider receives all OAuth server URLs that are configured in
InnovatorServerConfig.xml and prioritizes the list of OAuth server URLs according to the following order:

1 Last accessible OAuth server URL if presented.

2 URLs with the same host as the Aras Innovator server host.

3 All other URLs received from OAuthServerDiscovery.aspx.

After receiving the OAuth server URLs, the DiscoveryDocumentProvider tries to find an accessible path
by requesting /.well-known/openid-configuration paths from the list according to priority. After an
accessible path is found, DiscoveryDocumentProvider creates an instance of DiscoveryDocument based
on the response from the OAuth server and saves the last accessible URL.

The DiscoveryDocument contains information about:

• OAuth server endpoints (e.g., authorization and token endpoints),

• Protocol type (standard or custom),

• Protocol version.

This information is used while creating token providers in cases where it is necessary to provide the
DiscoveryDocument by itself or some data from it.

 ©2022 Aras Corporation All Copyrights Reserved. 84

Aras Innovator 2023 Release

Programmer’s Guide

The following example shows how to use the DiscoveryDocumentProvider:

var discoveryDocumentProvider = new DiscoveryDocumentProvider(

"https://myserver/MyInnovator/Server/InnovatorServer.aspx");

DiscoveryDocument discoveryDocument =

await discoveryDocumentProvider.GetDiscoveryDocumentAsync();

Note: The GetDiscoveryDocumentAsync method can take CancellationToken as a parameter to provide

the possibility of canceling a task.

The default DiscoveryDocumentProvider implementation does not use a cache for

DiscoverDocument. If caching is necessary for your application, it is possible to implement a

wrapper with the cache.

The DiscoveryDocument instance has the following properties:

• Issuer – token issuer identifier (OAuth server).

• JwksUri – JSON Web Key Set document URI.

• AuthorizeEndpoint – URL of authorization endpoint.

• TokenEndpoint – URL to token endpoint.

• EndSessionEndpoint – URL of end session endpoint.

• ProtocolVersion – version of protocol that is used by the OAuth server.

• ProtocolInfo – information about protocol that is used by the OAuth server.

• ProtocolType – type of protocol that is used by the OAuth server.

• KeySetJson – JSON web key set.

A Protocol is used to determine what authentication header is used by the OAuth server. The Standard
protocol type uses the "Authorization" header and 401 HTTP status code for "Unauthorized", the

Custom protocol type uses "X-Aras-Authorization" and 498 HTTP status code for

"Unauthorized". The Custom protocol type is necessary in case the Standard protocol type conflicts

with other protection mechanisms (e.g., when all server resources are protected by Windows
authentication).

The DiscoveryDocument class also makes it possible to get any other property from a discovery
document with the following methods:

• TryGetString(string name) – gets a string value from the discovery document by name. If the

property is not found, it returns null.

• TryGetBoolean(string name) – gets a boolean value from the discovery document by name. If

the property is not found or is not of the boolean type, it returns false.

• TryGetStringArray(string name) – gets a string array value from the discovery document by

name. If the property is not found or is not of the string array type, it returns null.

Note: For more information about discovery see https://openid.net/specs/openid-connect-discovery-

1_0.html.

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html

 ©2022 Aras Corporation All Copyrights Reserved. 85

Aras Innovator 2023 Release

Programmer’s Guide

11.1.1.2 Password Grant

The Password grant is useful in cases where the client can obtain the user credentials. Password grants
are often used for legacy or migration reasons. It is recommended to use other grant types whenever
possible.

Note: See more about Password grants in the OAuth 2.0 RFC specification:

https://tools.ietf.org/html/rfc6749#section-4.3

You must use the PasswordTokenProvider to get an access token using a Password grant... You must
pass PasswordTokenProviderOptions to create the PasswordTokenProvider:

// database, username and password values should be entered by user
String db;
String userName;
String password;

var tokenProvider = new PasswordTokenProvider(

 new PasswordTokenProviderOptions()

 {

 TokenEndpoint = discoveryDocument.TokenEndpoint,

 ClientId = "IOMApp",

 Scope = "Innovator",

 Database = db,

 UserName = userName,

 Password = password

 });

PasswordTokenProviderOptions use the following options:

• TokenEndpoint – URL of OAuth server token endpoint.

• ClientId – ID of OAuth client that requests token.

• Scope – scope that will be used to request token. Currently all Aras Innovator resources require

Innovator scope.

• Database – name of database to login to.

• UserName – user name.

• Password – user password.

Note: A password can be passed either as plain text or MD5/SHA256 hash (depending on FIPS mode).

To get an access token it is necessary to call the GetAccesTokenAsync method. This method sends a
request to the OAuth server token endpoint and returns the access token created by a Password grant.

string accessToken = await tokenProvider.GetAccessTokenAsync();

Note: The GetAccessTokenAsync method can take CancellationToken as a parameter to provide the

possibility of cancelling a task.

11.1.1.3 Impersonate Grant

The Client Credentials grant is usually used for communication between servers. Communication
between Aras Innovator servers requires user information. The token requested by the Client Credentials
grant does not contain user information, so the Impersonate grant has been implemented.

Note: Learn more about the Client Credentials grant in the OAuth 2.0 RFC specification:

https://tools.ietf.org/html/rfc6749#section-4.4.

https://tools.ietf.org/html/rfc6749#section-4.3
https://tools.ietf.org/html/rfc6749#section-4.4

 ©2022 Aras Corporation All Copyrights Reserved. 86

Aras Innovator 2023 Release

Programmer’s Guide

The Impersonate grant is a custom grant like the Client Credentials grant. The Impersonate grant is
designed to authenticate client by client assertion tokens and provide access tokens by username and
database. To request an access token using the Impersonate grant it is necessary to send the client
assertion token, scope, database, and username to the token endpoint of the OAuth server.

1. Before you can use the Impersonate Grant with custom applications, you must do the following: Use
OpenSSL to generate the certificates pair (PFX, CER files).

2. Put the public certificate (CER file) in the {Installation_Dir}\OAuthServer\App_Data\Certificates\
directory.

3. Use a private certificate (PFX file) in the custom application.

4. Configure the new OAuth client based on the InnovatorServer clientRegistry node using the allowed
impersonate grant located in the {Installation_Dir}\OAuthServer\OAuth.config directory.

Use the configured OAuth client for authentication with the Impersonate grant.

Note: See more information about assertion tokens in JWT specification:

https://tools.ietf.org/html/rfc7523

Warning The Impersonate grant is used by the trusted server application.

IClientAssertionProvider is used to provide an assertion token for the ImpersonateTokenProvider. The
default implementation of the IClientAssertionProvider is JwtBearerClientAssertionProvider. To create the
JwtBearerClientAssertionProvider it is necessary to provide JwtBearerClientAssertionProviderOptions.

var certificate = new X509Certificate2(

privateCertificateFilePath,

certificatePassword,

keyStorageFlags);

var assertionProvider = new JwtBearerClientAssertionProvider(

new JwtBearerClientAssertionProviderOptions

{

 ClientId = "ClientId",

 Audience = discoveryDocument.Issuer,

 Certificate = certificate,

 AssertionTokenLifetime = TimeSpan.FromSeconds(300)

});

Note: You can load the Certificate in X509Certificate2 from Certificate Store. For more information see

the other contructors of X509Certificate2 https://docs.microsoft.com/en-

us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.-ctor

JwtBearerClientAssertionProviderOptions have the following options:

• ClientId – the OAuth client ID that requests the token.

• Audience – determines where the assertion token will be used. In the case of the Impersonate grant,

the audience is the OAuth server. To get the correct value use the Issuer property of
DiscoveryDocument.

• Certificate – the X509Certificate2 instance of the client private certificate.

• AssertionTokenLifeTime – lifetime of the assertion token. The default value is 300 seconds.

To get the client assertion you must call the GetClientAssertionAsync method:

ClientAssertion assertion =

await assertionProvider.GetClientAssertionAsync();

https://tools.ietf.org/html/rfc7523
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.-ctor
https://docs.microsoft.com/en-us/dotnet/api/system.security.cryptography.x509certificates.x509certificate2.-ctor

 ©2022 Aras Corporation All Copyrights Reserved. 87

Aras Innovator 2023 Release

Programmer’s Guide

Client assertion contains the following properties:

• Type – assertion token type.

• Value – assertion token.

To create the ImpersonateTokenProvider it is necessary to pass ImpersonateTokenProviderOptions:

// database and username values should be entered by user

String db;

String userName;

var tokenProvider = new ImpersonateTokenProvider(

 new ImpersonateTokenProviderOptions()

 {

 TokenEndpoint = discoveryDocument.TokenEndpoint,

 ClientAssertionProvider = assertionProvider,

 Scope = "Innovator",

Database = db,

 UserName = userName

 });

ImpersonateTokenProviderOptions uses the following options:

• TokenEndpoint – URL of OAuth server token endpoint.

• ClientAssertionProvider – provider of assertion token.

• Scope – scope used to request the token.

• Database – name of the database to login to.

• UserName – user name.

Note: Custom IClientAssertionProvider implementation can be provided. There is no need to provide a

password because authentication is performed for client-by-client credentials. In this case client

credentials are assertion tokens.

You must call the GetAccessTokenAsync method to get an access token. This method sends a request to
the OAuth server token endpoint and returns the access token created by the Impersonate grant.

string accessToken = await tokenProvider.GetAccessTokenAsync();

Note: The GetAccessTokenAsync method can take the CancellationToken as a parameter for

cancelling a task.

11.1.1.4 Authorization Code Grant

The Authorization Code grant type is used to obtain access tokens and is optimized for confidential
clients. Since this is a redirection-based flow, the client must be capable of interacting with the resource
owner's user-agent (typically a web browser) and capable of receiving incoming requests (via redirection)
from the authorization server.

Note: See more about the Authorization Code grant in the OAuth 2.0 RFC specification:

https://tools.ietf.org/html/rfc6749#section-4.1

To request an access token using an authorization code grant it is necessary to use the
AuthorizationFlowTokenProvider. To create the AuthorizationFlowTokenProvider it is necessary to create
an INavigator instance.

https://tools.ietf.org/html/rfc6749#section-4.1

 ©2022 Aras Corporation All Copyrights Reserved. 88

Aras Innovator 2023 Release

Programmer’s Guide

The default implementation of INavigator is WpfBrowserNavigator which can be found in
Aras.IOM.OAuth.WpfBrowserNavigator nuget package. This navigator is used to allow browser-based
login from WPF and WinForms applications. WpfBrowserNavigator uses WebView2 control to process
navigation to URLs.

Aras.IOM.OAuth.WpfBrowserNavigator package located at \Utilities\Aras Innovator

<Version> IOM SDK\Packages directory on the CD Image.

Microsoft Edge WebView2 Runtime is a required component for WebView2 control. WebView2 Runtime
must be installed in each machine where developed application is run. It can be downloaded by following
link: https://developer.microsoft.com/en-us/microsoft-edge/webview2/#download-section

To use Aras.IOM.OAuth.WpfBrowserNavigator*.nupkg, it should be placed into the NuGet feed. See 11.6
to find information how to create local NuGet feed.

Note: The Aras.IOM.OAuth.WpfBrowserNavigator package has dependency to

Microsoft.Web.WebView2 package. If your project is targeted to net472 and has SDK project type

or you use PackageReference to refer to packages in non SDK project type than you need

additionally install Microsoft.Web.WebView2 package via Manager of NuGet packages. It is issue

of MSBuild and more information is there:

Note: https://github.com/dotnet/sdk/issues/20073

Note: https://github.com/dotnet/sdk/issues/3031

https://developer.microsoft.com/en-us/microsoft-edge/webview2/#download-section
https://github.com/dotnet/sdk/issues/20073
https://github.com/dotnet/sdk/issues/3031

 ©2022 Aras Corporation All Copyrights Reserved. 89

Aras Innovator 2023 Release

Programmer’s Guide

To create the WpfBrowserNavigator it is necessary to call a parameterless constructor. It is possible to
define values for displaying a browser window:

var navigator = new WpfBrowserNavigator

{

 Width = 900,

 Height = 600,

 Title = "Innovator"

};

WpfBrowserNavigator has the following properties:

• Width – width of browser window. Default value is 900.

• Height – height of browser window. Default value is 600.

• Title – title of browser window. Default value is "Innovator".

• Owner – owner of browser window in case of using WpfBrowserNavigator in WPF application. The

browser window will be centered within the owner window. If this property is not set, the browser
window will be centered within the current screen working area.

• OwnerHandle – owner of browser window in case of using WpfBrowserNavigator in not WPF

application. The browser window will be centered within the owner window. If this property is not set,
the browser window will be centered within the current screen working area.

Note: The IOM.OAuth.WpfBrowserNavigator.dll is stored next to .NET version of IOM.dll.

To create the AuthorizationFlowTokenProvider it is necessary to pass
AuthorizationFlowTokenProviderOptions:

// database value should be entered by user

String db;

var tokenProvider = new AuthorizationFlowTokenProvider(

 new AuthorizationFlowTokenProviderOptions()

 {

DiscoveryDocument = discoveryDocument,

 ClientId = "IOMApp",

 RedirectUrl = "iomapp://token",

 Scope = "Innovator",

 Database = db,

 AuthenticationType = "Windows",

 ResponseMode = ResponseMode.Query,

 Navigator = navigator

});

 ©2022 Aras Corporation All Copyrights Reserved. 90

Aras Innovator 2023 Release

Programmer’s Guide

AuthorizationFlowTokenProviderOptions have the following options:

• DiscoveryDocument – instance of DiscoveryDocument.

• GrantType – a grant type that is used to request an access token. The default value is

AuthorizationCode. Only the AuthorizationCode grant is currently supported.

• ClientId – the ID of the OAuth server client that requests a token.

• RedirectUrl – URL to return a token.

• Scope – scope used to request a token.

• Database – name of the database to login to.

• AuthenticationType – authentication type to use to authenticate.

• ResponseMode – response mode. The Default value is Query.

• Navigator – instance of INavigator.

Note: Database and AuthenticationType options are implemented to allow direct login. If both

values are set and the required authentication type allows login without the Aras Innovator login

page, the OAuth server will try to redirect to the specified authentication type automatically and

log the external user into the specified database.

You must call the GetAccessTokenAsync method to get an access token. This method sends a request to
the OAuth server Authorize endpoint, receives an authentorization code, sends the authorization code to
the token endpoint and gets the access token issued by the Authorization Code grant.

string accessToken = await tokenProvider.GetAccessTokenAsync();

Note: The GetAccessTokenAsync method can take the CancellationToken as a parameter to provide

the possibility of cancelling a task.

11.1.1.5 Authorization Code Grant with Windows Identity Provider

It is possible to use the IOM API for login via Windows authentication without user interaction. To request
an access token using Windows authentication you must use the WindowsTokenProvider. This provider
uses an Authorization Code grant.

To create a WindowsTokenProvider it is necessary to provide WindowsTokenProviderOptions:

// database value should be entered by user
String db;

var tokenProvider = new WindowsTokenProvider(

 new WindowsTokenProviderOptions()

 {

 ClientId = "IOMApp",

 DiscoveryDocument = discoveryDocument,

 RedirectUrl = "iomapp://token",

 Scope = "Innovator",

 AuthenticationType = "Windows",

 Database = db

 });

 ©2022 Aras Corporation All Copyrights Reserved. 91

Aras Innovator 2023 Release

Programmer’s Guide

WindowsTokenProviderOptions have the following options:

• DiscoveryDocument – an instance of DiscoveryDocument.

• ClientId – ID of OAuth server client that requests the token.

• RedirectUrl – URL to return the token.

• Scope – scope used to request the token.

• Database – name of the database to login to.

• AuthenticationType – the name of the authentication type used for Windows authentication in the

OAuth server.

• MaxRedirectsCount – maximum number of redirects during authentication. This option is required

to limit the number of redirects in a redirection-based flow to prevent eternal redirections. Default
value is 10.

Note: The "iomapp://token" is the default RedirectUri value for the IOMApp client of the OAuth server.

You must call the GetAccessTokenAsync method to get an access token. This method sends a request to
the OAuth server Authorize endpoint, receives the authorization code, sends the authorization code to the
token endpoint, and gets an access token issued by the Authorization Code grant.

string accessToken = await tokenProvider.GetAccessTokenAsync();

Note: The GetAccessTokenAsync method can take CancellationToken as a parameter to nake it

possible to cancel a task.

11.1.1.6 Using token providers with OData requests

To make OData requests valid for the Aras Innovator server it is necessary to have an access token. The
access token should be presented in the "Authorization" header in the case of the Standard protocol

type or in "X-Aras-Authorization" in the case of the Custom protocol type. The following example

demonstrates using the token provider for creating an OData request to the Aras Innovator server:

// database, username and password values should be entered by user
String db;
String userName;
String password;

var discoveryDocumentProvider = new DiscoveryDocumentProvider(

"https://myserver/MyInnovator/Server/InnovatorServer.aspx");

var discoveryDocument =

await discoveryDocumentProvider.GetDiscoveryDocumentAsync();

var tokenProvider = new PasswordTokenProvider(

 new PasswordTokenProviderOptions()

 {

 TokenEndpoint = discoveryDocument.TokenEndpoint,

 ClientId = "IOMApp",

 Scope = "Innovator",

 Database = db,

 UserName = userName,

 Password = password

 });

string token = await tokenProvider.GetAccessTokenAsync();

WebRequest request =

WebRequest("https://myserver/MyInnovator/Server/odata/" + resourcePath);

 ©2022 Aras Corporation All Copyrights Reserved. 92

Aras Innovator 2023 Release

Programmer’s Guide

request.Method = "GET";

request.Headers.Add(

discoveryDocument.ProtocolInfo.AuthorizationHeader, "Bearer " + token));

WebResponse response = request.GetResponse();

11.1.2 Using Token Provider with HttpServerConnection

The IomFactory class has a public method for creating a connection to the Aras Innovator server based
on the provided ITokenProvider implementation (from 12.0):

public static HttpServerConnection CreateHttpServerConnection(

string innovatorServerUrl,

ITokenProvider tokenProvider,

ProtocolType protocolType);

Note: There is CreateHttpSeverConnection overload that requires a database and does not require a

ProtocolType and uses the Standart ProtocolType by default. It is not recommended to use this

overload because this method is obsolete. It is recommended to use DiscoveryDocument to get

the current ProtocolType and pass it to the CreateHttpSeverConnection method.

There are also public methods for creating the connection without providing the ITokenProvider. They use
default ITokenProvider implementations: CreateHttpServerConnection uses PasswordTokenProvider,
CreateWinAuthHttpServerConnection uses WindowsTokenProvider.

Note: Connections that are created by CreateHttpServerConnection and

CreateWinAuthHttpServerConnection methods without providing ITokenProvider also support

legacy authentication for backward compatibility with Aras Innovator 11 SP14 and earlier.

Here is the example of code using the CreateHttpServerConnection method with
PasswordTokenProvider:

// database, username and password values should be entered by user
String db;
String userName;
String password;

var discoveryDocumentProvider = new DiscoveryDocumentProvider(

"https://myserver/MyInnovator/Server/InnovatorServer.aspx");

var discoveryDocument =

await discoveryDocumentProvider.GetDiscoveryDocumentAsync();

var tokenProvider = new PasswordTokenProvider(

 new PasswordTokenProviderOptions()

 {

 TokenEndpoint = discoveryDocument.TokenEndpoint,

 ClientId = "IOMApp",

 Scope = "Innovator",

 Database = db,

 UserName = userName,

 Password = password

 });

HttpServerConnection httpServerConnection = CreateHttpServerConnection(

"https://myserver/MyInnovator/Server/InnovatorServer.aspx",

tokenProvider,

discoveryDocument.ProtocolType);

 ©2022 Aras Corporation All Copyrights Reserved. 93

Aras Innovator 2023 Release

Programmer’s Guide

httpServerConnection.Login();

Here is an example of code using the CreateHttpServerConnection method with
AuthorizationFlowTokenProvider:

// database value should be entered by user
String db;

var discoveryDocumentProvider = new DiscoveryDocumentProvider(

"https://myserver/MyInnovator/Server/InnovatorServer.aspx");

var discoveryDocument =

await discoveryDocumentProvider.GetDiscoveryDocumentAsync();

var navigator = new WpfBrowserNavigator();

var tokenProvider = new AuthorizationFlowTokenProvider(

 new AuthorizationFlowTokenProviderOptions()

 {

DiscoveryDocument = discoveryDocument,

 ClientId = "IOMApp",

 RedirectUrl = "iomapp://token",

 Scope = "Innovator",

 Database = db,

 AuthenticationType = "Windows",

 ResponseMode = ResponseMode.Query,

 Navigator = navigator

});

HttpServerConnection httpServerConnection = CreateHttpServerConnection(

"https://myserver/MyInnovator/Server/InnovatorServer.aspx",

tokenProvider,

discoveryDocument.ProtocolType);

httpServerConnection.Login();

Note: It is recommended to set values that are necessary for authentication from config files or user

input so changing OAuth client settings does not affect your application.

11.2 COM-Compatible IOM
A COM-compatible version of the IOM.dll can be found in the \Utilities\Aras Innovator

<Version> IOM SDK\COM directory on the CD Image. Use this assembly to build Windows applications

in VB6 or VC++ or write, for example, VBA office macros or Windows Scripting Host applications
(VBScript or Jscript).

 ©2022 Aras Corporation All Copyrights Reserved. 94

Aras Innovator 2023 Release

Programmer’s Guide

To use the DLL, it must be registered in the Windows Registry. Use the following procedure:

1. Copy IOM.dll into a local folder.

2. Open a Command Prompt with Administrator privileges and run the RegAsm.exe tool to register the
DLL for x86 or x64 architechtures respectively:

%windir%\Microsoft.NET\Framework\v4.0.30319\RegAsm.exe .\IOM.dll /codebase

%windir%\Microsoft.NET\Framework64\v4.0.30319\RegAsm.exe .\IOM.dll /codebase

Note: IOM type library (IOM.tlb) can be found on the CD Image near IOM.dll. It is recommended to use

type library provided on CD Image instead of generating new one with /tlb argument for

RegAsm.exe tool.

3. If the assembly was successfully registered it must appear in the list of available COM references as
“Aras IOM 19.0 API (COM-compatible)”.

4. Add the reference to your project:

#import "{SDK_Dir}\COM\IOM.tlb"

5. Like .NET you must first create a connection, login and then create an Aras Innovator object.

Here is the sample code in C++:

_bstr_t url = L"https://myserver/MyInnovator/Server/InnovatorServer.aspx";

// database, username and password values should be entered by user

_bstr_t db;

_bstr_t userName;

_bstr_t password;

IOM::IIomFactoryComIncomingPtr iomFactory(__uuidof(IOM::IomFactory));

IOM::IHttpServerConnectionComIncomingPtr connection =

 iomFactory->CreateHttpServerConnection(url, db, userName, password);

IOM::IItemComIncomingPtr loginResult = connection->Login();

if (loginResult->isError())

{

 std::cout << "Failed to login.";

}

else

{

 IOM::IInnovatorComIncomingPtr innovator =

iomFactory->CreateInnovator(connection);

}

11.2.1 Obtaining an Access Token from COM Applications

11.2.1.1 OAuthFactory for creating COM objects

The COM-compatible IOM API introduces OAuthFactory class. Using this factory class users can create a
COM instance of discovery document providers or token providers.

OAuthFactory is a CoClass with “Aras.IOM.OAuthFactory.12.0” progId, that implemets IOAuthFactory
interface with the following methods:

IDiscoveryDocumentProvider* CreateDiscoveryDocumentProvider(BSTR

innovatorServerUrl)

 ©2022 Aras Corporation All Copyrights Reserved. 95

Aras Innovator 2023 Release

Programmer’s Guide

The method creates a DiscoveryDocumentProvider COM object based on the Innovator server URL.

IPasswordTokenProviderOptions* CreatePasswordTokenProviderOptions()

The method creates a PasswordTokenProviderOptions COM object which will be used while creating the
PasswordTokenProvider.

ITokenProvider* CreatePasswordTokenProvider(IPasswordTokenProviderOptions*

options)

The method creates a PasswordTokenProvider COM object based on the provided
IPasswordTokenProviderOptions.

IWindowsTokenProviderOptions* CreateWindowsTokenProviderOptions()

The method creates a WindowsTokenProviderOptions COM object which will be used while creating the
WindowsTokenProvider.

ITokenProvider* CreateWindowsTokenProvider(IWindowsTokenProviderOptions*

options)

The method creates a WindowsTokenProvider COM object based on the provided
IWindowsTokenProviderOptions.

IAuthorizationFlowTokenProviderOptions*

CreateAuthorizationFlowTokenProviderOptions()

The method creates an AuthorizationFlowTokenProviderOptions COM object which will be used for
AuthorizationFlowTokenProvider creation.

ITokenProvider*

CreateAuthorizationFlowTokenProvider(IAuthorizationFlowTokenProviderOption

s* options)

The method creates an AuthorizationFlowTokenProvider COM object based on the provided
IAuthorizationFlowTokenProviderOptions.

Note: Option objects are used to pass arguments to factory methods creating corresponding provider

objects. Developer should set property values of option object as necessary before passing it to

corresponding factory method.

Here is an example of creating PasswordTokenProvider with OAuthFactory in C++:

_bstr_t innovatorServerUrl =

L"https://myserver/MyInnovator/Server/InnovatorServer.aspx";

// database, username and password values should be entered by user

_bstr_t db;

_bstr_t userName;

_bstr_t password;

IOM::IOAuthFactoryPtr oauthFactory(__uuidof(IOM::OAuthFactory));

IOM::IDiscoveryDocumentProviderPtr discoveryDocumentProvider =

oauthFactory->CreateDiscoveryDocumentProvider(innovatorServerUrl);

IOM::IDiscoveryDocumentPtr discoveryDocument =

 ©2022 Aras Corporation All Copyrights Reserved. 96

Aras Innovator 2023 Release

Programmer’s Guide

discoveryDocumentProvider->GetDiscoveryDocument();

IOM::IPasswordTokenProviderOptionsPtr options =

oauthFactory->CreatePasswordTokenProviderOptions();

 options->TokenEndpoint = discoveryDocument->GetTokenEndpoint();

 options->ClientId = L"IOMApp";

 options->Scope = L"Innovator";

 options->Database = db;

 options->UserName = userName;

 options->Password = password;

IOM::ITokenProviderPtr passwordTokenProvider =

oauthFactory->CreatePasswordTokenProvider(options);

11.2.1.2 COM-Compatible WpfBrowserNavigator

A COM-compatible version of the IOM.OAuth.WpfBrowserNavigator.dll can be found near the COM-
compatible IOM.dll in the \Utilities\Aras Innovator <Version> IOM SDK\COM directory on

the CD Image.

This assembly contains classes that provide the possibility of using browser-based authentication for
applications in VB6, VC++, VBScript, JScript etc.

To use the WpfBrowserNavigator DLL it must be registered in the same way as the IOM.dll. See steps for
registration in section 10.2.

Note: WpfBrowserNavigator type library (IOM.OAuth.WpfBrowserNavigator.tlb) can be found on the CD

Image and it is recommended to use it in the same way as IOM.COM type library.

Here is the sample code for creating WpfBrowserNavigator in C++:

// windowHandle should be set by developer

long windowHandle;

IOM_OAuth_WpfBrowserNavigator::IWpfBrowserNavigatorPtr wpfBrowserNavigator

(__uuidof(IOM_OAuth_WpfBrowserNavigator::WpfBrowserNavigator));

wpfBrowserNavigator->Height = 600;

wpfBrowserNavigator->Width = 980;

wpfBrowserNavigator->Title = L"Innovator";

wpfBrowserNavigator->OwnerHandle = windowHandle;

Note: The browser window will be centered within the owner window specified by the OwnerHandle

property. If this property is not set, the browser window will be centered within the current screen

working area.

11.2.2 Using Token Provider with HttpServerConnection

The IomFactory class has a public CreateHttpServerConnection2 method for creating a connection to the
Aras Innovator server based on the provided ITokenProvider implementation.

CreateHttpServerConnection2 method takes the following parameters:

• innovatorServerUrl – URL to Innovator server.

• tokenProvider – instance of ITokenProvider.

• protocolType – information about protocol that is used by the OAuth server.

 ©2022 Aras Corporation All Copyrights Reserved. 97

Aras Innovator 2023 Release

Programmer’s Guide

Here is an example of creating an HttpServerConnection with AuthorizationFlowTokenProvider in C++:

IOM::IOAuthFactoryPtr oauthFactory(__uuidof(IOM::OAuthFactory));

_bstr_t innovatorServerUrl =

L"https://myserver/MyInnovator/Server/InnovatorServer.aspx"

IOM::IDiscoveryDocumentProviderPtr discoveryDocumentProvider =

oauthFactory->CreateDiscoveryDocumentProvider(innovatorServerUrl);

IOM::IDiscoveryDocumentPtr discoveryDocument =

discoveryDocumentProvider->GetDiscoveryDocument();

// windowHandle should be set by developer

long windowHandle;

IOM_OAuth_WpfBrowserNavigator::IWpfBrowserNavigatorPtr wpfBrowserNavigator

(__uuidof(IOM_OAuth_WpfBrowserNavigator::WpfBrowserNavigator));

wpfBrowserNavigator->Height = 600;

wpfBrowserNavigator->Width = 980;

wpfBrowserNavigator->Title = L"Innovator";

wpfBrowserNavigator->OwnerHandle = windowHandle;

IOM::IAuthorizationFlowTokenProviderOptionsPtr options =

oauthFactory->CreateAuthorizationFlowTokenProviderOptions();

options->DiscoveryDocument = discoveryDocument;

options->ClientId = L"IOMApp";

options->Scope = L"Innovator";

options->RedirectUri = L"iomapp://token/";

options->ResponseMode = IOM::ResponseMode::ResponseMode_Query;

options->Navigator = wpfBrowserNavigator;

IOM::ITokenProviderPtr tokenProvider =

oauthFactory->CreateAuthorizationFlowTokenProvider(options);

IOM::IHttpServerConnectionComIncomingPtr connection =

 iomFactory->CreateHttpServerConnection2(

innovatorServerUrl,

tokenProvider,

discoveryDocument->GetProtocolType());

11.3 iOS IOM
An iOS version of the IOM.IOS.dll can be found in the \Utilities\Aras Innovator <Version>

IOM SDK\iOS directory on the CD Image. You can copy it to another location and reference it by an iOS

Mobile App using Xamarin’s existing framework to generate an iOS App project. IOM APIs belong to the
Aras.IOM namespace. First, every application must create a connection with the Aras Innovator server
and login to the server using the connection. If the login succeeds, then you must create an instance of
class Innovator with the connection. Here is a small sample:

…

using Aras.IOM;

…

 //create connection to Innovator server

 string server = "https://myserver/MyInnovator";

// database, username and password values should be entered by user

 ©2022 Aras Corporation All Copyrights Reserved. 98

Aras Innovator 2023 Release

Programmer’s Guide

 string db;

 string username;

 string password;

 HttpServerConnection connection =

IomFactory.CreateHttpServerConnection(server, db, username, password);

 //login

 Item user = await connection.LoginAsync();

 if (user.isError())

 {

 throw new Exception(user.getErrorString());

 }

11.4 Android IOM
A RT version of IOM.Android.dll can be found in the \Utilities\Aras Innovator <Version> IOM

SDK\Android directory on the CD Image. You can copy it to another location and reference it by an

Android App using Xamarin’s existing framework to generate an Android project. IOM APIs belong to the
Aras.IOM namespace. First, every application must create a connection with the Aras Innovator server
and login to the server using the connection. If the login succeeds create an instance of class
Innovator with the connection. Here is a small sample:

…

using Aras.IOM;

…

 //create connection to Innovator server

 string server = "https://myserver/MyInnovator";

// database, username and password values should be entered by user

 string db;

 string username;

 string password;

 HttpServerConnection connection =

IomFactory.CreateHttpServerConnection(server, db, username, password);

 //login

 Item user = await connection.LoginAsync();

 if (user.isError())

 {

 throw new Exception(user.getErrorString());

11.5 Aras.IOM NuGet-package
NuGet-package for IOM can be found in the Packages folder of \Utilities\Aras Innovator

<Version> IOM SDK.zip archive on the CD Image. The package contains .NET Standard and .NET

Framework versions of IOM. It is recommended to use it for new .NET Core and .NET 5+ projects. It may
be used for new .NET Framework projects, as well. See section 11.6 to find instructions how to setup
local NuGet feed.

Note: Examples for .NET IOM are suitable for .NET Standard version. Please see section 11.1 for more

information.

 ©2022 Aras Corporation All Copyrights Reserved. 99

Aras Innovator 2023 Release

Programmer’s Guide

11.5.1 .NET Core-Compatible WpfBrowserNavigator

Aras.IOM.OAuth.WpfBrowserNavigator package described in section 11.1.1.4 is compatible with .NET 6.0
and can be used in projects targeted to .NET 6.0 platform.

To create the WpfBrowserNavigator it is necessary to call a parameterless constructor. It is possible to
define values for displaying a browser window. To create the AuthorizationFlowTokenProvider it is
necessary to pass AuthorizationFlowTokenProviderOptions:

var navigator = new WpfBrowserNavigator

{

 Width = 900,

 Height = 600,

 Title = "Innovator"

};

// database value should be entered by user

String db;

var tokenProvider = new AuthorizationFlowTokenProvider(

 new AuthorizationFlowTokenProviderOptions()

 {

DiscoveryDocument = discoveryDocument,

 ClientId = "IOMApp",

 RedirectUrl = "iomapp://token",

 Scope = "Innovator",

 Database = db,

 AuthenticationType = "Windows",

 ResponseMode = ResponseMode.Query,

 Navigator = navigator

});

Note: The behaviour of .NET 6.0 version of IOM.OAuth.WpfBrowserNavigator.dll is the same as for

.NET framework version. See section 11.1.1.4 for more information.

11.6 Setting up local NuGet feed
To reference NuGet-packages it’s necessary to publish them into NuGet feed. One of possible NuGet
feeds is a local NuGet repository. To create a local repository, you need to do following steps:

1. Create LocalPackages directory in repository of your project

2. Copy NuGet packages to the LocalPackages folder

3. Create NuGet.Config file in root directory of your project

4. Put following value in Nuget.Config file

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <packageSources>

 <add key="localPackages" value="LocalPackages" />

 </packageSources>

</configuration>

5. Run Visual Studio

6. Open the project in which you need to reference NuGet-package

 ©2022 Aras Corporation All Copyrights Reserved. 100

Aras Innovator 2023 Release

Programmer’s Guide

7. Perform right mouse click on project in solution explorer and click ‘Manage NuGet packages’ in
context menu

8. Choose LocalPackages in Package source

9. Search for necessary package and install.

Note: You can find more information about private NuGet feeds on https://docs.microsoft.com/en-

us/nuget/hosting-packages/overview

https://docs.microsoft.com/en-us/nuget/hosting-packages/overview
https://docs.microsoft.com/en-us/nuget/hosting-packages/overview

 ©2022 Aras Corporation All Copyrights Reserved. 101

Aras Innovator 2023 Release

Programmer’s Guide

12 Using CheckinManager

The CheckInManager is a function built into the IOM.dll which allows for the loading of large data
structures into Aras Innovator that contain Images, Drawings, Documents, or other Items of the File
Itemtype.
The following use cases describe how to use CheckInManager to submit images and drawings, either
individually or as a collection.

12.1 Submitting Images

The following is the first step in submitting a File structure to CheckInManager to create a CAD item and
add properties to it. The following code shows a typical AML query for creating a CAD item:

In this scenario, the setFileProperty method is required to add a property whose type is File. The
parameters of setFileProperty include the Property’s name and the fully qualified path of the File.

If you need to use the CheckinManager to load an Image Property, you must set the Attribute
checkinManager-type on the Property (such as in the thumbnail, below) to “Image”. The following
example shows the AML for the query:

Item cad0 = innovator.newItem("CAD", "add");
cad0.setProperty("item_number", innovator.getNewID()); // required by CAD ItemType
cad0.setFileProperty("native_file", Path.Combine(directory, "input/native-0.cad"));
cad0.setFileProperty("thumbnail", Path.Combine(directory, "input/thumbnail-0.png"));
cad0.setPropertyAttribute("thumbnail", "checkinManager-type", "Image");
cad0.setProperty("name", "submitting-images-cad0");

 ©2022 Aras Corporation All Copyrights Reserved. 102

Aras Innovator 2023 Release

Programmer’s Guide

If you are only importing one Item, you can then pass the Item directly to the CheckinManager. The
following example uses cad0 from the previous scenario:

You can also use this code to import more than one item. For example, given two CAD Items, referenced
as cad0 and cad1 in the following example, you can generate 1 AML that contains both Items, as

demonstrated here:

The following is the AML code which would result from the loadAML statement:

Item configuration = innovator.newItem();
configuration.loadAML("<AML>" + cad0.node.OuterXml + cad1.node.OuterXml + "</AML>");

using (CheckinManager manager = new IomFactory().CreateCheckinManager(cad0))
{

Item response = manager.Checkin(numThreads);
// …

}

 ©2022 Aras Corporation All Copyrights Reserved. 103

Aras Innovator 2023 Release

Programmer’s Guide

The following code can then be used to apply the query contained in the configuration value:

You must make sure you observe the following requirements for the query to work correctly:

• You must have at least one File or Image property otherwise CheckinManager will throw an
exception.

• The Item passed to CreateCheckinManager cannot be null.

• A File item must have either an Add or a Create action associated with it.

• CAD items only support the following actions:

o Add

o Update

o Delete

o Version

o Skip

Specifying any other type of action results in an exception being thrown.

12.2 Submitting Drawings

In this use case, the Items are set up the same way they were set up in the previous use case. The
difference is that the items created here have multiple parents. You must instantiate the
MultiParentConfigurationBuilder class to add more than one parent. The following code relies on an item
configuration, as shown in the previous examples:

using (CheckinManager manager = new IomFactory().CreateCheckinManager(configuration))
{

Item response = manager.Checkin(numThreads);
// …

}

MultiParentConfigurationBuilder builder =
factory.CreateMultiParentConfigurationBuilder(configuration);

Item drawingA = innovator.newItem("CAD", "add");
drawingA.setProperty("item_number", innovator.getNewID()); // required by CAD ItemType
drawingA.setFileProperty("native_file", Path.Combine(directory, "input/native-
A.cad"));
drawingA.setProperty("name", "submitting-images-drawingA");
builder.addParent(cadA.getID(), drawingA, "CAD Structure");

 ©2022 Aras Corporation All Copyrights Reserved. 104

Aras Innovator 2023 Release

Programmer’s Guide

The following is the AML for the cadA Item from the example:

The following shows the AML code for the drawingA Item:

The addParent function creates a link between these two structures that generates the complete
structure, as shown in the final CAD structure shown here:

 ©2022 Aras Corporation All Copyrights Reserved. 105

Aras Innovator 2023 Release

Programmer’s Guide

The following is the AML code for multiParentConfiguration:

<AML>
 <Item isNew="1" isTemp="1" type="CAD" action="add" id="4C8DD7F5785E4E9D97461BDF2D1228D3">
 <item_number>7C9FD065FAAC4D4F955820E0FEC5CB5A</item_number>
 <name>submitting-drawings-cadA</name>
 <Relationships>
 <Item isNew="1" isTemp="1" type="CAD Structure" action="add">
 <related_id>
 <Item isNew="1" isTemp="1" type="CAD" action="add" id="774A4C99DDC7454E9D5A0BB84EA60459">
 <item_number>C8CB6EB081A24945A100C3CE8FE0BFA6</item_number>
 <name>submitting-drawings-cadB</name>
 </Item>
 </related_id>
 </Item>
 <Item isNew="1" isTemp="1" type="CAD Structure" action="add">
 <related_id>
 <Item isNew="1" isTemp="1" type="CAD" action="add" id="B236FBFD63CA4BD89AEF8A443E5942FE">
 <item_number>DCCA69BB52AE4CC185FBD3B450EF314B</item_number>
 <name>submitting-drawings-cadC</name>
 </Item>
 </related_id>
 </Item>
 </Relationships>
 </Item>
 <Item isNew="1" isTemp="1" type="CAD" action="add" id="AF1763AA429D41119C896E5170D1A725">
 <item_number>4816709F699946B595B4FBDF55FCE313</item_number>
 <native_file>
 <Item isNew="1" isTemp="1" type="File" action="add" id="8C83A9DD1EED4AA586CF6A53E7D542B3">
 <filename>native-A.cad</filename>
 <actual_filename>C:\Sandbox\pbellis\checkinmanagerexamples\CompilableCode\examples\submitting-
 drawings\bin\Debug\input\native-A.cad</actual_filename>
 <checkedout_path>C:\Sandbox\pbellis\checkinmanagerexamples\CompilableCode\examples\submitting-
 drawings\bin\Debug\input</checkedout_path>
 <Relationships>
 <Item type="Located" action="add" where="related_id='67BBB9204FE84A8981ED8313049BA06C'">
 <related_id>67BBB9204FE84A8981ED8313049BA06C</related_id>
 </Item>
 </Relationships>
 </Item>
 </native_file>
 <name>submitting-drawings-drawingA</name>
 <Relationships>
 <Item isNew="1" isTemp="1" type="CAD Structure" action="add">
 <related_id>4C8DD7F5785E4E9D97461BDF2D1228D3</related_id>
 </Item>
 </Relationships>
 </Item>
 <Item isNew="1" isTemp="1" type="CAD" action="add" id="D0AD5B11F58F4CB79978C2FB4BFD1A71">
 <item_number>D54200E995B9410F808EEB26FB9E04AB</item_number>
 <native_file>
 <Item isNew="1" isTemp="1" type="File" action="add" id="DFE1AA07106B4AC4B63595E8CC89833F">
 <filename>native-B.cad</filename>
 <actual_filename>C:\Sandbox\pbellis\checkinmanagerexamples\CompilableCode\examples\submitting-
 drawings\bin\Debug\input\native-B.cad</actual_filename>
 <checkedout_path>C:\Sandbox\pbellis\checkinmanagerexamples\CompilableCode\examples\submitting-
 drawings\bin\Debug\input</checkedout_path>
 <Relationships>
 <Item type="Located" action="add" where="related_id='67BBB9204FE84A8981ED8313049BA06C'">
 <related_id>67BBB9204FE84A8981ED8313049BA06C</related_id>
 </Item>
 </Relationships>
 </Item>
 </native_file>
 <name>submitting-drawings-drawingB</name>
 <Relationships>
 <Item isNew="1" isTemp="1" type="CAD Structure" action="add">
 <related_id>774A4C99DDC7454E9D5A0BB84EA60459</related_id>

 ©2022 Aras Corporation All Copyrights Reserved. 106

Aras Innovator 2023 Release

Programmer’s Guide

 </Item>
 </Relationships>
 </Item>
 <Item isNew="1" isTemp="1" type="CAD" action="add" id="E5F643DCC71A4740AC29189B064C9AC6">
 <item_number>5FE746744D8C433281F32C9588F2D64B</item_number>
 <native_file>
 <Item isNew="1" isTemp="1" type="File" action="add" id="8C4C44D934B14CE0A8779008F4395F89">
 <filename>native-C.cad</filename>
 <actual_filename>C:\Sandbox\pbellis\checkinmanagerexamples\CompilableCode\examples\submitting-
 drawings\bin\Debug\input\native-C.cad</actual_filename>
 <checkedout_path>C:\Sandbox\pbellis\checkinmanagerexamples\CompilableCode\examples\submitting-
drawings\bin\Debug\input</checkedout_path>
 <Relationships>
 <Item type="Located" action="add" where="related_id='67BBB9204FE84A8981ED8313049BA06C'">
 <related_id>67BBB9204FE84A8981ED8313049BA06C</related_id>
 </Item>
 </Relationships>
 </Item>
 </native_file>
 <name>submitting-drawings-drawingC</name>
 <Relationships>
 <Item isNew="1" isTemp="1" type="CAD Structure" action="add">
 <related_id>B236FBFD63CA4BD89AEF8A443E5942FE</related_id>
 </Item>
 </Relationships>
 </Item>
</AML>

In this case, cadA is equal to configuration. The last line of code creates a CAD Structure relationship

between drawingA and cadA. The example repeats similar logic for cadB and cadC. The following code

then applies the query:

The first line converts the Builder’s query into a query that supports multiple parents as determined by the
calls to builder.addParent. After the first line of code, query execution is applied in the same way as a
standard CheckInManager query.

Item multiParentConfiguration = builder.GetItemConfiguration();

using (CheckinManager manager =
factory.CreateCheckinManager(multiParentConfiguration))
{

Item response = manager.Checkin(numThreads);

// …

}

 ©2022 Aras Corporation All Copyrights Reserved. 107

Aras Innovator 2023 Release

Programmer’s Guide

12.3 Async Processing
The previous use cases allow the main thread to do the processing. In this use case, the class offloads all
logic to a separate thread from the executing thread. Because of this, you need to keep the following in
mind:

• Using the Dispose pattern as the main thread continues execution and disposes of the
CheckInManager will cause a NullReferenceException.

• Retrieving the results from the CheckinManager requires a callback for either

UploadFilesCompleted or CheckinCompleted. UploadFilesCompleted loops through all the

files and writes out which files have been added. If an error is encountered, an exception is thrown.
CheckInCompleted stores a list of all the results.

• In CheckinCompleted, you must dispose of the CheckInManager to prevent a resource leak.

